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Abstract 

Signal Detection Theory (SDT; Green & Swets, 1966) is a well-established technique to 

analyze accuracy data in a number of experimental paradigms in psychology, most 

notably memory and perception, by separating a response bias/criterion from the 

theoretically bias-free discriminability/sensitivity. As SDT has traditionally been applied, 

the researcher may be confronted with loss in statistical power and erroneous inferences. 

A generalized linear mixed-effects modeling (GLMM) approach is presented and 

advantages with regard to power and precision are demonstrated with an example 

analysis. Using this approach, a correlation of response bias and sensitivity was detected 

in the dataset, especially prevalent at the item level, though a correlation between these 

measures is usually not found to be reported in the memory literature. Directions for 

future extensions of the method as well as a brief discussion of the correlation between 

response bias and sensitivity are enclosed. 
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Generalized Linear Mixed Modeling of Signal Detection Theory 

Introduction 

People make numerous decisions every day as to whether a particular state of the world is 

present or not. Those judgments include deciding whether or not to bring an umbrella to 

work, judging whether or not one’s phone just rang, assessing whether or not one knows 

that person on the bus, and various others. Clearly, not all such decisions are trivial, but 

may in fact have serious implications. There might be a situation in which one type of 

error might come at a different cost than the other and there might be one situation in 

which the same erroneous decision is costlier than in another situation. 

There is a variety of statistical and computational models that attempt to explain 

such decisions as the result of a cognitive evaluation of evidence and the desire of the 

decision maker to make the correct or most beneficial decision in any given case. One 

such theoretical framework, signal detection theory (SDT; Green & Swets, 1966; see also 

Macmillan & Creelman, 2008), attempts to analyze that binary decision-making behavior 

in terms of two conceptually separate measures. While one is thought to measure the 

discriminative ability, the other captures bias toward one response or the other, regardless 

of the true status of the current stimulus.  

Traditionally, SDT-based measures are estimated by aggregating the binary 

responses and stimulus status identifiers across observations, thereby generating two 

distinct “yes” rates per subject and condition. My thesis explores an alternative approach 

that uses mixed effects modeling to estimate these measures and discusses the various 

disadvantages of the traditional approach. While SDT is commonly used in a number of 

domains, examples will be discussed in the context of recognition memory experiments. 
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Modeling binary decision-making 

A common context for SDT is a yes/no recognition memory experiment. In such an 

experimental design, the subject is first presented with a list of items to study (the so-

called study phase). In a subsequent test or recognition phase, the subject is presented 

with a list containing the previously studied (old) items as well as some number of new 

items (typically but not necessarily in a 1:1 ratio). The subject is instructed to say or press 

“yes” or “no” for each item, indicating whether or not it was previously studied. Under 

the assumption that subjects respond truthfully and understand the instructions, one can 

assume in the context of evidence accumulation models that for “yes” responses, the 

subject experienced a sufficient amount of evidence of oldness, whereas for “no” 

responses they did not. 

Under these circumstances, in a typical yes/no recognition test, “old” (previously 

studied) items are usually correctly detected (hits, H) but also sometimes falsely rejected 

as “new” (misses, M). Conversely, “new” items are usually correctly rejected but some 

will also be falsely detected as “old” (false alarms, F). The probabilities of correctly 

identifying an old item (H) and falsely identifying a new item (F) are the most commonly 

reported measures in recognition memory experiments and similar decision-making 

experiments. 

Signal detection models are thus mostly fit to data sets that bear no item-level 

information by aggregating across all observations for each subject within each cell of the 

experimental design; they do not take advantage of the full range of information from the 

crossed random factors “subject” and “item”. Instead, items presented in the same 

experimental condition are assumed to have the same effects on the response. Thus, the 



 3 

parameters that are estimated for each subject are assumed to be identical for each trial 

and may only differ with regard to fixed, controlled item properties. 

Depending on the particular modeling approach, model estimates might be 

represented as maximum-likelihood estimates (MLEs), Bayesian posterior distributions or 

least-square estimates (LSEs), but in all cases predictions are usually only made for 

condition- and subject-level averages, not for single observations. 

Furthermore, they typically assume that items do not differ in how model 

parameters are distributed. After a brief introduction to SDT, I will introduce hierarchical 

modeling and illustrate a solution to the problem of crossed random factors in recognition 

memory modeling in a SDT framework. 

Signal Detection Theory 

Signal detection theory (SDT; Green & Swets, 1966; see also Macmillan & Creelman, 

2008) is especially popular in memory research but also widely used in other domains, 

such as psychophysics and social cognition. In the context of recognition memory 

experiments, the method analyzes “yes” rates – the proportion of “yes” responses vs. “no” 

responses to the question whether the test stimuli had previously been presented – for old 

and new stimuli (i.e., hit rates and false alarm rates). It assumes that a “yes” response is 

made whenever signal evidence for a given stimulus is above a given criterion (or 

response bias) and that a “no” response is made elsewise, on a unidimensional evidence 

strength continuum that ranges from −∞ (no evidence at all) to ∞ (perfect evidence). 

Both the new and old item distributions are equally distanced from 𝑧0 = 0. The 

greater the distance between these two evidence strength distributions (see Figure 1), the 

less they overlap onto the other side of the criterion C or the equilibrium 𝑧0. This distance 
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is thus termed sensitivity (d’) and each distribution is exactly 12 𝑑′ positively or negatively 

shifted from 𝑧0. A positive value of d’ indicates that the target distribution is located to 

the right (more positive side) of the lure distribution. Note, however, that d’ is merely the 

distance between the distribution means. Even high values do not imply that evidence for 

all old items is stronger than for all new items. Under the assumption that the majority of 

responses is correct, evidence strength for old items is usually more positive than for new 

items, hence d’ is typically positive. A greater positive value indicates better 

discrimination, while a value of zero would indicate chance performance as both 

distribution means would equal 𝑧0 = 0 and thus half of the responses for both old and 

new items would be “yes”. A negative d’ technically indicates performance worse than 

chance but can also reflect incorrect coding or confusion of response buttons. 

 
Figure 1. Signal detection model (unequal variance of old and new evidence strength). The horizontal axis 
is the strength of evidence, the vertical axis density (relative frequency). 
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Figure 2. Cumulative distribution function of the unequal-variance signal detection model. The distribution 
parameters are the same as in Figure 1. 

As depicted in Figure 1, the distributions of evidence strength for old and new 

items are both assumed to be normally distributed, but they may differ in their underlying 

variance. The measures of response bias and sensitivity are derived from the assumed 

properties of these two distributions. Sensitivity (d’) is an indicator for an observer’s 

ability to make a binary distinction between “signal” and “noise” and is reflected in the 

distance between the two distributions. It is assumed to be independent from criterion or 

response bias C, denoting which response (“yes” or “no”) – and thus which type of error 

(false alarm or miss) is more likely, regardless of the status of the stimulus. It is 

conceptually identical to the evidence threshold that is to be exceeded. Depending on the 

situation and especially in the case of asymmetrical error costs or payoff1, such response 

                                                
1 Error costs might be asymmetrical due to various circumstances. For example, in a 
security context, it might be costlier to miss a potential threat than to false-alarm. In that 
scenario, it would be beneficial to shift the response criterion toward a more liberal 
responding to make a “yes” more likely and thereby decrease misses but increase false 
alarms. 
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bias can be beneficial. However, it can also be observed in occasions where it is in fact 

neither instructed nor beneficial for the task. 

The following parts of this section introduce the less complex equal-variance 

signal detection (EVSD) and the slightly more flexible unequal-variance signal detection 

(UVSD) models, as well as how the estimation of response bias and sensitivity takes 

place in each approach. 

Equal-variance signal detection. In EVSD models, the means of the old and new 

distributions are equal to the probit-transformed2 hit and false alarm rates, which can be 

seen in the following equations and Figure 1. The hit rate H is the proportion of “old” 

evidence strength that exceeds the criterion C, or the area under the distribution function 

between C and ∞. Conversely, the false alarm rate F is the proportion of “new” evidence 

strength that exceeds the criterion C. 

 𝐻 = Pr(“yes”|𝑜𝑙𝑑) = ∫ 𝜑(𝑥 − 𝜇𝑜𝑙𝑑) 𝑑𝑥
∞

𝐶
= Φ(𝜇𝑜𝑙𝑑 − 𝐶) (1) 

 𝐹 = Pr(“yes”|𝑛𝑒𝑤) = ∫ 𝜑(𝑥 − 𝜇𝑛𝑒𝑤) 𝑑𝑥
∞

𝐶
= Φ(𝜇𝑛𝑒𝑤 − 𝐶) (2) 

 𝜇𝑜𝑙𝑑 = Φ−1(𝐻) + 𝐶 (3) 

 𝜇𝑛𝑒𝑤 = Φ−1(𝐹 ) + 𝐶  (4) 

Therefore, the bias-free distance between the two distributions (sensitivity d’) is 

equal to: 

 𝑑′ = 𝜇𝑜𝑙𝑑 − 𝜇𝑛𝑒𝑤 = Φ−1(𝐻 ) − Φ−1(𝐹 ) (5) 

                                                
2 The probit transformation Φ(𝑧) is the cumulative distribution function of 𝑧~𝒩 (0,1), or 
the area under the density function 𝜑 of a standard normal distribution (𝜇 = 0, 𝜎 = 1) 
between −∞ and 𝑧. 
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The response bias or criterion is measured as the shift of the bias-free equilibrium 

of the distributions (𝐶0 = 𝑧0 = 0) that satisfies the conditions in Eqs. 1 and 2. Given that 

𝜇𝑜𝑙𝑑 = 𝑧0 + 1
2 𝑑′, 𝜇𝑛𝑒𝑤 = 𝑧0 − 1

2 𝑑′ (see Figure 1), and 𝑧0 = 0, the criterion is located at: 

 𝐶 = − Φ−1(𝐻 ) + Φ−1(𝐹 )
2

 (6) 

As Φ−1(0) = −∞ and Φ−1(1) = ∞, one cannot calculate C and d’ for a single 

observation using this approach. Instead, observations are typically aggregated for each 

subject in each condition by averaging over items. C and d’ are then calculated from hit 

rates and false alarm rates, which are “yes” rates to old and new items, respectively.  

 𝐻𝑗𝑘 = 1
𝑛𝑜𝑙𝑑 ∑ 𝐼{𝑦𝑖𝑗𝑘="𝑦𝑒𝑠"}

𝑛𝑜𝑙𝑑

𝑖
 (7) 

 𝐹𝑗𝑘 = 1
𝑛𝑛𝑒𝑤 ∑ 𝐼{𝑦𝑖𝑗𝑘="𝑦𝑒𝑠"}

𝑛𝑛𝑒𝑤

𝑖
 (8) 

Both d’ and C are measured in units of standardized evidence strength. While d’ 

captures the distance between the mean evidence strength for old items and for new 

items, C measures how many additional units of evidence strength are needed to make a 

“yes” response or how much the theoretically neutral evidence threshold (0) has been 

shifted. 

The above measures require a number of observations greater than 1 in order to 

yield rates that can possibly be different from 0 or 1. However, even for a larger number 

of observations, depending on the experimental conditions, it is not impossible for 

incidental ceiling and floor rates of 0.0 and 1.0 to occur. To still be able to calculate SDT 

measures, one will then typically assume an upper and lower bound on hit and false alarm 

rates that is a half observation from ceiling/floor. For example, if in one condition there 

were 80 old items, all of which were detected as targets (80 “yes” responses), the 
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observed hit rate would be 1.00. With the correction, however, the upper boundary would 

be set at 159
160, so that the corrected hit rate would be ≈ 0.99. 

Unequal-variance signal detection. UVSD models and the methods to estimate 

their model parameters differ only slightly from EVSD models. UVSD model estimates 

are based on the fact that the CDF 𝐹 (𝑧, 𝜇, 𝜎) for a normally distributed variable 𝒵  scaled 

by its standard deviation is exactly identical to the CDF of a standard normal distribution 

Φ. 

 𝒵 ~𝒩 (𝜇, 𝜎2)  

 𝐹 (𝓏, 𝜇, 𝜎) = Φ (
𝓏 − 𝜇

𝜎 ) (9) 

This can be applied to the calculation of C and d’ to extend the model to account 

for unequal variance. To avoid overspecification, one distribution is set as a reference 

distribution regarding the variance. This is usually the variance of the “old” distribution 

so that 𝜎𝑜𝑙𝑑 = 1 and 𝜎𝑛𝑒𝑤 is the scaling parameter to be estimated. 

 𝐻 = ∫ 𝜑 (
𝑥 − 𝜇𝑜𝑙𝑑

𝜎𝑜𝑙𝑑 ) 𝑑𝑥
∞

𝐶
= Φ (

𝜇𝑜𝑙𝑑 − 𝐶
𝜎𝑜𝑙𝑑 ) (10) 

 𝜇𝑜𝑙𝑑 = 𝜎𝑜𝑙𝑑Φ−1(𝐻) + 𝐶 = Φ−1(𝐻) + 𝐶  (11) 

 𝐹 = ∫ 𝜑 (
𝑥 − 𝜇𝑛𝑒𝑤

𝜎𝑛𝑒𝑤 ) 𝑑𝑥
∞

𝐶
= Φ (

𝜇𝑛𝑒𝑤 − 𝐶
𝜎𝑛𝑒𝑤 ) (12) 

 𝜇𝑛𝑒𝑤 = 𝜎𝑛𝑒𝑤Φ−1(𝐹 ) + 𝐶  (13) 

 𝑑′ = Φ−1(𝐻 ) − 𝜎𝑛𝑒𝑤Φ−1(𝐹 ) (14) 

 𝐶 = −
Φ−1(𝐻) + 𝜎𝑛𝑒𝑤Φ−1(𝐹 )

2
 (15) 

Note that if 𝜎𝑛𝑒𝑤 = 𝜎𝑜𝑙𝑑 = 1, the equations are identical to those for the EVSD 

model. The interpretation of the magnitude of C and d’, however, is not as 

straightforward as for the EVSD model. As EVSD assumes that old and new variance be 
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equal, both measures are to be understood in the context of that equal variance. If the 

model is specified as above, C and d’ are conceptualized in units of the “old” distribution. 

There are different possibilities to scale these estimates to make them more meaningful in 

ROC decision space3. However, one might argue that this step is somewhat arbitrary and 

not inherently necessary to capture experimental effects within one dataset. 

Researchers rarely provide a clear reason for using unequal-variance signal 

detection (UVSD) models other than better model fit (Green & Swets, 1966; Macmillan 

& Creelman, 2008; Parks & Yonelinas, 2008). A reasonable statistical explanation for the 

different variances is based on the fact that the variance of the sum of two random 

variables is larger than their individual variances. If total evidence comprises both true 

oldness and error, variance of the overall evidence distribution will necessarily be 

somewhat larger than each of the individual oldness and error distributions. It is 

reasonable to assume that for new items there is less variance in oldness than for old 

items; in fact, it should be very small with a very low mean as it was not subject to 

encoding. On the contrary, old items were encoded, assumingly with varying success. 

Therefore, not only will the mean oldness be higher but there will also be more variation 

in how strongly items have been encoded (and later on, retrieved). 

Shortcomings of traditional by-subject analytical approaches 

For several decades, experimental psychology has been largely interested in the 

explanation of means and deviation of means. These are very often analyzed using 

                                                
3 A receiver operating characteristic (ROC) is an illustration of the discriminative ability 
of a binary classifier, plotting hit rates against false alarm rates. Sensitivity (d’) is derived 
from the noise-signal distance in ROC space under the assumption that their variances are 
equal and the ROC curve symmetrical. For unequal variance, a correction is necessary to 
construct a theoretical symmetry of the ROC curve. 
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instances of the general linear model, such as linear regression or analysis of variance 

(ANOVA) as originally introduced by R. A. Fisher (1925). 

Any measurement and subsequent analysis, however, is prone to measurement 

error. This is true for virtually every scientific discipline but undoubtedly of particular 

relevance for behavioral data, for which potential sources of variances are numerous to 

such an extent that accounting for most of them is extraordinarily difficult if not 

impossible. To reduce measurement error, researchers make use of the law of large 

numbers (LLN), which states that with an increasing number of observations the average 

of all observations will approach the real mean. Using only descriptive statistics, it is very 

likely that the means for two conditions that are to be compared will differ to some 

degree. Such a difference is statistically significant in null-hypothesis significance testing 

(NHST) if it is unlikely that the observed result or one more extreme could have been 

produced by virtue of sampling error, i.e., randomly drawing samples from a population 

in which the real effect is null. 

Both ANOVA and linear regression approach this problem by assessing whether 

the variance accounted for between conditions is greater than the unaccounted variance 

within conditions and how likely it is that this ratio could be produced by a null effect. 

Before the data are subjected to statistical inference, they must meet the assumption of 

independence.4 However, observations from the same subject are typically correlated5 

and therefore not independent. This and the LLN theorem are why results are typically 

                                                
4 In addition to independence, the assumptions of normality and homogeneity of variance 
have to be met as well. Those are, however, not of particular relevance for the discussed 
problem. 
5 The assumption of independence is violated if subsets of observations are correlated. 
This is especially the case for behavioral measures as they are correlated in time and one 
can assume that responses from the same subject result from the same cognitive 
configuration. 
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aggregated for each subject and condition, thereby paradoxically reducing the wealth of 

information. 

In SDT, this is usually done by calculating a hit rate and a false alarm rate for each 

subject and condition. Consequently, C and d’ are then estimated on the basis of H and F 

in each condition. In the case of SDT analysis, therefore, aggregation across responses is 

necessary to compute hit and false alarm rates different between 0 and 1 and to meet the 

assumption of independence. 

When data are aggregated across trials for each subject, the researcher may 

eliminate dependence of the observations within each subject, but it is just as reasonable 

to eliminate subject-level dependence by aggregating across subjects for each item. This 

approach is usually termed F2-analysis, whereas the more typical by-subject approach is 

called F1-analysis. Both approaches might meet the assumption of independence but the 

general implication is that with either analysis, variance and covariance on the level that 

is aggregated across is discarded, potentially distorting the result and increasing statistical 

error. The power of both approaches can be integrated by combining them in a single 

F1/F2-ANOVA, but the increasingly effortful analytical approach does not yield very 

much gain in statistical power. 

In summary, data aggregation, as usually performed in the traditional analytical 

approaches mentioned above, is both a necessity for meeting statistical assumptions and a 

disadvantageous loss of explainable variance. A more comprehensive statistical modeling 

approach, linear mixed-effects modeling, is in many cases capable of incorporating 

crossed random factor variance. 
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Linear Mixed Models 

Consider the linear model as defined below in Equation 16. The dependent variable 𝑌𝑖𝑗, 

which represents the i-th observation within condition j, is being predicted as a function 

of the linear intercept 𝑎 and the predictor variable 𝑋𝑗 with slope 𝑏: 

 𝑌𝑖𝑗 = 𝑎 + 𝑏𝑋𝑗 + 𝜀𝑖𝑗  (16) 

A linear regression will try to find values for intercept and slope for given values 

of 𝑌𝑖𝑗 and 𝑋𝑗 that minimize the residual error 𝜀𝑖𝑗 . Note, however, that the estimated linear 

predictors (𝑎 and 𝑏 in this case) are constant across all observations. This means that 

when this model is fit to a dataset, the resulting model coefficients will represent a model 

that best fits the average of the dataset. To satisfy the independence assumption, the data 

are aggregated across items or subject before the model fitting, either across items for 

subjects (F1-analysis) or across subjects for items (F2-analysis).  

Baayen and colleagues (Baayen, 2008; Baayen, Davidson, & Bates, 2008) have 

discussed the inferiority of the F1/F2 approach in psycholinguistics compared to linear 

mixed models (LMMs). Such models can account for several so-called random factors at 

once. Instead of running different analyses that discard different sources of variance and 

then combine those analyses’ statistics, mixed models are capable of modeling variance 

in both subjects and items at once. The approach separates fixed effects, which are 

commonly shared across all observations, from random effects, which are deviations in 

those fixed effects based on the identity of each subject and item for each observation. 

Those models are fitted to non-aggregated datasets, eliminating the necessity of deciding 

whether to perform an F1- or F2-analysis. 

The model based in Equation 16 can be easily extended to a linear mixed-effects 

model by conceptualizing the linear coefficients as the sum of fixed and random effects. 
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If the coefficients vary across subjects j and items k, the resulting mixed-effects model is 

written out as follows: 

 𝑌𝑖𝑗𝑘𝑙 = 𝜔𝑗𝑘
(𝑎) + 𝜔𝑗𝑘

(𝑏)𝑋𝑗 + 𝜀𝑖𝑗𝑘𝑙 (17) 

 𝜔𝑗𝑘
(⋅) = 𝜇(⋅) + 𝛼𝑗

(⋅) + 𝛽𝑘
(⋅) (18) 

Each model coefficient now consists of a fixed effect 𝜇, a subject-level random 

effect 𝛼𝑗  and an item-level random effect 𝛽𝑘. When the model is fit to the dataset of 

{𝑌𝑖𝑗𝑘𝑙, 𝑋𝑗}, the fitting procedure attempts to minimize the unexplained error for the 

entirety of observations when each observation 𝑌𝑖𝑗𝑘𝑙 is predicted as a function of the 

overall fixed intercept 𝜇(𝑎), that observation’s subject-level intercept 𝛼𝑗
(𝑎), its item-level 

intercept 𝛽𝑘
(𝑎), as well as the fixed slope 𝜇(𝑏), subject-level random slope 𝛼𝑗

(𝑏) and item-

level slope 𝛽𝑘
(𝑏) on the predictor 𝑋𝑗. 

In addition to the estimation of by-group variance components (random intercepts 

and random slopes), LMMs may also be used to capture covariance in pairs of variance 

components. If effects are expected to co-vary at the subject or item level, the correlation 

parameter can capture additional covariance, improve model fit and make more precise 

predictions. However, the capture of random-level covariance is not only of interest for 

improving model fit but might actually provide very useful information about the 

correlational nature of a dependent variable.  

The approach uses unaggregated data by letting model coefficients vary across 

independent experimental units (items and subjects) simultaneously and specifically 

makes use of dependence and correlation in data, thus increasing goodness of fit and 

possibly even combining the branches of experimental and correlational research 
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(Cronbach, 1957). Baayen (2008) shows that LMMs make consistently fewer statistical 

errors (of either kind) and lead to more reliable results in psycholinguistics. 

In contrast to the fixed effects, which directly correspond to the same factors one 

would also consider in a standard linear regression or ANOVA, the design of the random 

effects can be more difficult. In mixed-effects modeling, there are several different 

approaches to decide how to specify the random-effects structure. Whereas some authors 

recommend a so-called maximal structure6 (Barr, Levy, Scheepers, & Tily, 2013), others 

argue that such a structure is computationally expensive for large datasets, often fails to 

converge, and increases Type-II errors (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 

2017). Instead, Matuschek et al. highlight the importance of model parsimony, suggesting 

it might be more appropriate to start with a minimal model and increase complexity 

incrementally, evaluating each increase in model complexity with regard to goodness of 

fit. The goal of the model fit should be to achieve a good compromise between parsimony 

and precision, or Type-I and Type-II error. 

Even though LMMs do not assume independence of observations but in fact use 

those dependencies to achieve a better model fit, they do assume linearity and normality. 

Statistical inferences are therefore only valid if residuals are normally distributed and the 

model will only converge if there is a linear mapping of the independent variables on the 

dependent variable. For non-aggregated data in recognition memory experiments, this 

poses some difficulties, as the dependent measure is always either 0 or 1 and their 

corresponding inverse probit transformations −∞ and ∞, respectively. One might 

therefore be tempted to conclude that the approach does not lend itself to analyses of 

                                                
6 A maximal random-effects structure implies that all fixed effects have each one random 
effect at both the item and subject level. 
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binary recognition judgments. However, the solution to this problem is a generalization of 

the LMM that performs a logistic regression rather than a linear regression. 

The generalized linear mixed modeling (GLMM) approach to SDT is further 

discussed in the following section. Even though there have been promising attempts at 

hierarchical diffusion modeling (e.g., Vandekerckhove, Tuerlinckx, & Lee, 2011), such 

models are simply too computationally expensive for even one random factor (i.e., 

subject). A GLMM approach to diffusion models is therefore not discussed herein but 

other hierarchical modeling techniques would likely increase the power of those models. 
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GLMM approach to SDT 

Signal detection theory has proven to be a very informative and efficient approach to 

analyzing binary accuracy data. However, considering the deficiency in precision and 

power in traditional by-participant analyses compared to crossed mixed effects models, it 

is worth considering a mixed-effects modeling approach to signal detection theory. This 

could circumvent some of the pitfalls of traditional data analysis and in fact yield more 

reliable parameter estimates. 

This is why research is starting to shift toward other statistical methods, such as 

more flexible regression techniques. DeCarlo (1998) introduced an adaptation of SDT in 

generalized linear models and subsequent publications extended the approach to mixed 

models (DeCarlo, 2010, 2011). Other authors have even applied this model using 

Bayesian statistics (Rouder et al., 2007; Rouder & Lu, 2005; Song, Nathoo, & Masson, 

2017), though Bayesian model fitting is not the major focus of this thesis. Although the 

mixed-model approach to accuracy analysis, particularly in memory research, is more 

powerful than the traditional by-subject approach (Murayama, Sakaki, Yan, & Smith, 

2014), the method is still fairly novel and has not been applied widely outside the 

statistical and methodological realm. Theoretically, however, it is possible to use this 

approach to estimate signal detection parameters and compute their highest density 

intervals (HDIs) or even Bayesian credibility intervals in lieu of standard frequentist 

confidence intervals, which are in most cases a less intuitive or even inadequate source of 

information, depending on the motivation for their computation (e.g., see Morey, 

Hoekstra, Rouder, Lee, & Wagenmakers, 2016). 

In the remainder of this section, I will introduce the generalized linear model 

(GLM) of SDT, the mixed-model (GLMM) adaptation thereof, and power simulations 
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intended to demonstrate the precision of model estimates and statistical inferences based 

on the model fits compared to the traditional SDT approach. In the following section I 

will describe an experiment and its results as analyzed using both traditional and GLMM 

approaches. 

Generalized Linear Model of Signal Detection Theory 

The first step toward a mixed-effects model of SDT is to formulate it as a general linear 

model (DeCarlo, 1998). Consider hit rates (Eq. 10) and false alarm rates (Eq. 12) as 

probabilities of a “yes” response conditional on the old/new status of the target: 

 Pr̂(“yes”|𝑜𝑙𝑑) = Φ
⎝
⎜
⎜
⎛−𝐶 + 1

2 𝑑′

𝑠𝑜𝑙𝑑 ⎠
⎟
⎟
⎞
 (19) 

 Pr̂(“yes”|𝑛𝑒𝑤) = Φ
⎝
⎜
⎜
⎛−𝐶 − 1

2 𝑑′

𝑠𝑛𝑒𝑤 ⎠
⎟
⎟
⎞
 (20) 

If 𝑠𝑜𝑙𝑑 = 1, 𝑎𝑜𝑙𝑑 = 1
2, and 𝑎𝑛𝑒𝑤 = − 1

2, we can simplify the equations above in Eq. 

21. In DeCarlo’s (1998) original model and most published extensions of it, the old/new 

status predictor (𝑎𝑥) is set to 0 and 1 instead. That, however, changes the interpretation of 

the model’s intercept to be equal to Φ−1(𝐹 ) and does not make it directly comparable to 

the traditional version of C. 

 Pr̂(“yes”|𝑥) = Φ (
−𝐶 + 𝑎𝑥𝑑′

𝑠𝐼{𝑥=𝑛𝑒𝑤} ) (21) 

Note that 𝐼{𝑥=𝑛𝑒𝑤} = 1 for 𝑥 = 𝑛𝑒𝑤 or 0 elsewise, i.e. for 𝑥 = 𝑜𝑙𝑑. Therefore, for 

old items, the denominator in Equation 21 equals 1 for old items and 𝑠 for new items. By 

rewriting C and d’ as model coefficients 𝜔(𝑐) and 𝜔(𝑑), respectively, we can conclude a 

probit regression model as follows:  
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 Pr(“yes”|𝑥) = Φ (
𝜔(𝑐) + 𝜔(𝑑)𝑎𝑥

𝜎𝐼{𝑥=𝑛𝑒𝑤} ) (22) 

This model can now be used to estimate C and d’ as regression coefficients in a 

binomial regression with a probit link function and heteroscedastic error (𝜎𝐼{𝑥=𝑛𝑒𝑤}). 

Theoretically, one could now estimate C and d’ for a given condition and subject by 

fitting the model to the two values of {𝑦 = 𝐻 , 𝑥 = old} and {𝑦 = 𝐹 , 𝑥 = new}. For least-

squares estimation, this will yield the exact same results as the traditional approach 

(Equations 14 and 15, p. 8). 

Note that some popular software packages will not allow estimation of a 

heteroscedastic error term (unequal variance) at the same time as the linear model 

coefficients (i.e., 𝜔(𝑐) and 𝜔(𝑑)) are being estimated. To bypass this issue, one may wish 

to estimate unequal variance separately or consider a non-linear approach. For an 

implementation of a scaled probit link function, which can be used in the case that the 

unequal variance is estimated in a separate step before the fitting of the actual model, see 

Appendix B. 

A frequent approach to estimating the variance parameter is based on Equation 14 

and the resulting linear relation of z-transformed hit and false alarm rates: 

 Φ−1(𝐻) = 𝑑′ + 𝜎𝑛𝑒𝑤Φ−1(𝐹 ) (23) 

It follows that Φ−1(𝐻) ∝ Φ−1(𝐹 ) and consequently, 𝜎𝑛𝑒𝑤 can be estimated as the 

linear slope of Φ−1(𝐹 ) on Φ−1(𝐻). A crucial assumption that this approach entails is 

isosensitivity. In other words, the H-F pairs used for the linear regression are assumed to 

be underlying the same sensitivity (d’). This requires at least two independent pairs of hit 

and false alarm rates per subject and condition. Often, this is achieved by recording the 

participant’s certainty with each recognition judgment and then aggregating observations 
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within levels of certainty, so that there is one H-F pair for each level of certainty and 

experimental condition. In cases where no certainty is being recorded, a different 

approach is to collapse a condition that is known not to be associated with changes in 

sensitivity. This will yield one H-F pair per level of collapsed condition for each 

isosensitivity regression. At any rate, the approach makes a number of additional 

assumptions, some of which are likely to be violated under various circumstances.  

Generalized Mixed-Effects Model of Signal Detection Theory 

Based on the general linear model defined in Equation 22 and the concept of mixed 

effects (Eq. 18), one can now extend the model to account for subject-level and item-level 

variation in the model coefficients C and d’ by fitting the model to an unaggregated data 

set of yes/no observations (DeCarlo, 1998, 2010, 2011; Rouder et al., 2007). 

 Pr𝑗𝑘(“yes”|𝑙) = Φ
⎝
⎜
⎜
⎛𝜔𝑗𝑘

(𝑐) + 𝜔𝑗𝑘
(𝑑)𝑎𝑙

𝜎𝑗𝑘
𝐼{𝑙=𝑛𝑒𝑤}

⎠
⎟
⎟
⎞
 (24) 

 = Φ
⎝
⎜
⎜
⎛𝜇(𝑐) + 𝛼𝑗

(𝑐) + 𝛽𝑘
(𝑐) + 𝜇(𝑑)𝑎𝑙 + 𝛼𝑗

(𝑑)𝑎𝑙 + 𝛽𝑘
(𝑑)𝑎𝑙

𝜎𝑗𝑘
𝐼{𝑙=𝑛𝑒𝑤}

⎠
⎟
⎟
⎞
  

In the model above, 𝜔𝑗𝑘
(𝑐) defines response bias as a function of the overall 

response bias 𝜇(𝑐), the subject-level effect 𝛼𝑗
(𝑐), and item-level variation 𝛽𝑘

(𝑐). Sensitivity 

𝜔𝑗𝑘
(𝑑) is defined as a function of 𝜇(𝑑), 𝛼𝑗

(𝑑) and 𝛽𝑘
(𝑑). Consequently, the probability of a 

“yes” response is modeled as a function of those coefficients 𝜔𝑗𝑘
(𝑐) and 𝜔𝑗𝑘

(𝑑). The variance 

parameter 𝜎𝑗𝑘 is the variance of the “new” evidence distribution given subject j and item 

k. The variance of the “old” distribution is assumed to be equal to 1 for all subjects, items, 

and conditions. 
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Additional experimental conditions can be included as effects in the model simply 

by adding additional predictors, such as 𝑏𝑚 in the model below: 

 Pr𝑗𝑘(“yes”|𝑙, 𝑚) = Φ
⎣
⎢
⎢
⎡𝜔𝑗𝑘

(𝑐) + 𝜔𝑗𝑘
(𝑑)𝑎𝑙 + (𝜔𝑗𝑘

(𝑒) + 𝜔𝑗𝑘
(𝑓 )𝑎𝑙)𝑏𝑚

𝜎𝑗𝑘𝑚
𝐼{𝑙=𝑛𝑒𝑤}

⎦
⎥
⎥
⎤
 (25) 

In this model, in addition to the overall effects of response bias and sensitivity on 

the response, a fixed factor is included. This variable can be either continuous or discrete 

in terms of a contrast between two conditions. The nature of the contrast (e.g., dummy, 

effect coding, etc.) defines how the “main effects” of response bias and sensitivity are to 

be interpreted (i.e., as overall means for effect coding, or baseline effects for 

dummy/treatment coding). The model coefficient 𝜔𝑗𝑘
(𝑒) represents the response bias effect 

of 𝑏𝑚 while 𝜔𝑗𝑘
(𝑓 ) models the sensitivity effect of 𝑏𝑚. As for the other coefficients, those 

will have a fixed component, which is the effect that all observations have in common, as 

well as random components, which are the subject-level and item-level deviations in 

effect sizes. 

Note that there can only be a random effect if the factor 𝑏𝑚 varies within the 

experimental unit for which the random effect is to be included. Likewise, there may only 

be a random slope 𝛽𝑘
(𝑑), for example, if items vary between subjects in their old/new 

status. In other words, there may only be an item-level sensitivity effect if items appear in 

both the old and new status condition across subjects. 

In the resulting model, intercepts (𝜔𝑗𝑘
(𝑐)) are “main” response bias effects, the 

slopes on the target status predictor (𝜔𝑗𝑘
(𝑑)) are “main” sensitivity effects, slopes on 

predictors interacting with target status (𝜔𝑗𝑘
(𝑓)) are sensitivity effects, and all other slopes 
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(𝜔𝑗𝑘
(𝑒)) are response bias effects. A quite straightforward model fitting technique that can 

be applied to this model is maximum-likelihood estimation (MLE), as suggested by 

DeCarlo (1998, 2010). This will result in a parameter configuration for which the 

observed data are most likely. 

Even though the GLMM method is a mathematically more coherent and flexible 

approach, it is arguably also more complicated than the traditional by-subject analysis. It 

is therefore understandable why this approach has not been extensively used so far. In 

fact, on average there have not been more than three peer-reviewed memory-related 

journal articles per year that cite the GLMM approach to SDT7, and of course, a citation 

alone does not necessarily mean that this method was actually used for data analysis. In 

the following subsection, I will therefore present an argument that highlights another 

advantage of the GLMM approach (or mixed-effects models in general), and might be of 

particular interest for researchers who frequently apply SDT to their data and are 

interested in robust parameter estimation and statistically powerful inferences based on 

that theoretical framework. 

Power analysis of the GLMM approach to SDT 

As many proponents of mixed-effects modeling regularly point out, LMMs and variants 

thereof consistently provide better fits and higher power compared to a majority of other 

linear regression models. Song et al. (2017) present evidence from simulation studies that 

both Bayesian GLMMs and non-Bayesian maximum-likelihood GLMMs consistently 

                                                
7 As of December 2017, Web of Science counts 116 peer-reviewed journal articles which 
cite at least one of DeCarlo (1998, 2010, 2011) or Rouder et al. (2007), 58 of which 
contain the keyword “memory.” 
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provide more power and precision for the detection of fixed effects over a variety of 

different model configurations, error variances etc. 

As Song et al.’s accuracy models are similar to the model class previously 

discussed herein, their simulation results map onto the GLMM approach to SDT as well. 

Correlation parameters in the random effects structure are, however, another model 

parameter which has heretofore been mostly overlooked. While variance parameters 

(random intercepts and random slopes) capture how much individual items or subjects 

differ from a population mean, correlation parameters can capture correlated effects. If 

effects are correlated, statistically accounting for that covariance will increase model fit. 

Correlation parameters are estimated as part of the GLMM fitting. Note that these are 

estimated as part of the variance-covariance matrix and are thus not visible in the 

simplified linear notation in Eqs. 24 and 25 but only in the more complex matrix notation 

of the model. 

Another aspect that is oftentimes not attended to is how precisely models capture a 

true effect. A good model should reject the alternative hypothesis when it is false and 

accept it when true, but also should the model estimate be a precise representation of the 

true effect. This is especially important when the goal of a statistical analysis is not only 

to evaluate whether an experimental manipulation affects a given parameter but also to 

determine the magnitude of the effect. 

Therefore, I have simulated datasets to be subjected to the traditional by-subject 

approach and the GLMM approach. Different parameter configurations were considered 

for the simulation of the datasets. Between datasets, number of subjects (𝑁𝑆 ∈

{20, 30, … , 120}) and real item-level correlation between sensitivity and response bias 

(𝑟𝐼 ∈ {0.0, 0.1, … , 0.5}) were varied. Number of items (𝑁𝐼 = 320), subject-level 
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correlation (𝑟𝑆 = 0.0), random effect variance components (SDs of random intercepts and 

slopes), fixed effects (𝐶 = 0.1, 𝑑′ = 1.5), and residual variance (𝜎 = 1.0) were held 

constant. Each of the 66 configurations (11 levels of 𝑁𝑆  and 6 levels of 𝑟𝐼 ) was 

simulated 100 times and subsequently analyzed with both analytical approaches. Note 

that the terms “subjects” and “items” are completely interchangeable in these simulations, 

as the discussed approach uses crossed random factors (i.e., random effects at the one 

level are assumed to be independent from the other level). See Appendix A for a more 

detailed description of the simulation process. 

For the power analyses, 95% CIs were calculated for the item-level correlation 

parameter 𝑟𝐼  from both models. In the traditional aggregation approach8, CIs were 

calculated from the by-item estimated correlation parameter and follow a t-distribution 

with 𝑑𝑓 = 𝑁𝐼 − 2 = 318. For the GLMM approach, 95% CIs are highest density regions 

as estimated by maximum-likelihood profiling of the covariance parameter. For either 

model, the correlation parameter was accepted to be significant if the CI did not include 

zero.  

The power simulations provide evidence for a consistent advantage of GLMM 

over the traditional approach. When the real correlation parameter was zero, the GLMM 

approach made fewer type-I errors (falsely rejecting the null hypothesis) than the 

traditional approach. The advantage is especially evident for medium correlations and 

smaller sample sizes. 

                                                
8 Note that for the simulations, data were aggregated by item across subjects in order to 
estimate the correlation of C and d’ at the item level (F2-analysis). However, by 
interchanging the terms “subject” and “item”, this applies equally to F1-analyses that 
evaluate subject-level correlations. 
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Even more compelling than the GLMM’s lower overall error rate is that the 

associated confidence intervals almost always contain the real correlation parameter, 

whereas the traditional aggregating models surprisingly do not, counterintuitively 

especially for high correlations (see Figure 3). Presumably, this is because the traditional 

approach ignores a significant amount of variance that the GLMM can capture. 

 
Figure 3. Simulation of traditional (solid lines) and mixed models (dashed lines) for percentage of H0 
rejected (top row) and percentage of models with the 95% parameter CI containing the true effect (see top 
panel captions). Power for the item-level correlation between C and d’ is visualized as a function of model 
and number of subjects (sample size at other level). Power curves are smoothed using binomial regression 
splines. 

The aforementioned analysis demonstrates how the number of units at one level 

(e.g., subjects) can affect the detectability of a correlation between C and d’ at the other 

level (e.g., items), i.e. how many subjects are needed to provide enough power to detect 

an item-level correlation. For an F1-analysis (subject level) of the correlation between C 

and d’, however, it is more important to assess how the number of units at a given level 

can affect the detectability of a correlation at that same level, i.e. how many subjects are 

needed in order to provide enough power to detect a true subject-level correlation. For 
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parsimony, what follows is a power analysis for the item-level correlation as a function of 

number of items; however, the argument applies for the subject-level correlation and 

number as well. 

 
Figure 4. Simulation of traditional (solid lines) and mixed models (dashed lines) for percentage of H0 
rejected (top row) and percentage of models with the 95% parameter CI containing the true effect (see top 
panel captions). Power for the item-level correlation between C and d’ is visualized as a function of model 
and number of items (sample size at same level). Power curves are smoothed using binomial regression 
splines. 

As can be seen in Figure 4, there is a similar tendency for the rejection of the null 

hypothesis as in the previous analysis. However, the confidence interval for the item-level 

correlation coefficient tends to exclude the real value as numbers of items and the 

magnitude of the real value increase. This trend is again only true for the traditional 

analysis but there is no evidence for the GLMM to produce estimates that are comparably 

flawed. 

Furthermore, there is a slight increase in false positive results (rejecting the null 

when it is true) as the number of items increases for the traditional analysis only. Thus, if 

one is to decide whether there is a correlation between C and d’, a high number of items 
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for an item-level correlation (as well as a high number of subjects for a subject-level 

correlation) can lead to false negative or false positive results if one utilizes the traditional 

analysis. The GLMM analysis is less prone to such error and in fact seems to account for 

sample size a lot more efficiently. 

In the performed analyses, both GLMMs and the traditional approach benefited 

from larger samples and a larger true effect with respect to correctly rejecting or 

accepting the null. Under similar conditions, however, GLMM statistics were overall 

more likely to be correct in failing to reject the null when it was true or rejecting it when 

it was false. The traditional approach requires larger samples and/or stronger correlations 

in order to reliably reject the null when it is false. 

As previously mentioned, it may also be of interest to report the magnitude of an 

effect, especially of correlations. What the simulations above suggest is that a confidence 

interval for a correlation coefficient is less likely to contain the true value if the traditional 

approach is used compared to the GLMM approach. Moreover, while the GLMM CIs 

seem to contain the true value over a wide variety of parameters, the traditional approach 

actually loses predictive power as the magnitude of the true value and/or the number of 

units in the same random factor increase. In other words, if an item-level correlation is to 

be estimated, a large number of items and/or a large true correlation are likely to lead to 

CIs excluding the true value. The same would be true for the effect of number of subjects 

and of the magnitude of the true correlation on the estimated subject-level correlation 

coefficient confidence interval. 

What causes the higher number of CIs containing the true value for GLMMs 

compared to the traditional method? It is possible that this phenomenon is a result of 

systematically wider CIs that just tend to contain the true value more often than narrower 
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CIs. However, a generally wider CI would not explain why the GLMM rejects the null 

more often when there is a true effect, as a wider CI would also be more likely to contain 

zero, all other things being equal. It is therefore helpful to examine the CIs at a more 

general level. 

Consider the problem of estimating the correlation of item-level sensitivity and 

response bias estimates, depending on number of subjects and number of items. As 

visible in Figure 5, all other factors being equal, CIs are generally wider for the GLMM 

method, but they do benefit from higher sample sizes (number of subjects). By contrast, 

for the traditional approach, the point estimate does approach the true value as the number 

of subjects increases; its CI remains constant. This is because CI standard error in the 

traditional approach is computed solely from item variance after aggregating over 

subjects. The GLMM method, however, also takes into account the variance and 

covariance at the subject level when estimating the error for the item-level correlation 

estimate. Important to note is that, given enough subjects, the traditional method can 

technically estimate the true value as well. Those sample sizes are, however, much higher 

than for the GLMM.  

This is also confirmed by the analysis of the effect of number of items on the 

correlation CIs. As can be seen in Figure 6, the effect of number of items is quite similar 

for the GLMM method, but now the traditional method also benefits from the added data. 

Nevertheless, point estimates tend to be underestimated and CIs more narrow as the 

number of items increases, leading to the paradoxical circumstance that with higher 

number of items, the traditional method is less likely to contain the true value in its 

correlation CIs. Likewise, this applies to the effect of number of subjects on the subject-

level correlation of sensitivity and response bias. 
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Figure 5. Simulated point estimates and confidence intervals of the item-level correlation between 
sensitivity and response bias as a function of sample size (number of subjects), true correlation, and model. 
Thick lines represent mean upper boundary and mean lower boundary of all computed CIs. Darker bins 
indicate higher number of point estimates in that bin. Horizontal solid lines indicate the true correlation and 
dashed horizontal lines the null. 

 
Figure 6. Simulated point estimates and confidence intervals of the item-level correlation between 
sensitivity and response bias as a function of sample size (number of items), true correlation, and model. 
Thick lines represent mean upper boundary and mean lower boundary of all computed CIs. Darker bins 
indicate higher number of point estimates in that bin. Horizontal solid lines indicate the true correlation and 
dashed horizontal lines the null. 
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independent, but a failure to measure a correlation between them (or to underestimate its 

magnitude) could very well be due to the selection of an inappropriate analytical method. 

In summary, what these analyses demonstrate is that GLMMs outperform traditional SDT 

analyses not only for the estimation of fixed and random effects (Song et al., 2017) but 

also for the estimation of the correlation between C and d’. 
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Experiment 

Introduction 

In order to demonstrate the GLMM method, a recognition memory experiment was 

designed with the intention of replicating the robust and selective effects of processing 

depth on sensitivity and payoff on response bias as reported in the memory literature. The 

design was chosen so that processing depth would be manipulated at study, presumably 

affecting sensitivity; and payoff at test, presumably shifting response bias. Moreover, it 

aimed to assess whether there is a correlation between signal detection parameters at 

either the item or the subject level. 

Processing depth (Craik & Lockhart, 1972; Craik & Tulving, 1975) or levels of 

processing follows the reasoning that cognitive information processing occurs in distinct 

or interleaved stages. The “deeper” the processing (i.e., the more processing stages have 

taken place since the perceptual input), the more accurate or successful the encoding 

and/or retrieval of the memory. A possible explanation for the phenomenon entails that, 

as a stimulus is being passed through more stages of processing, there are more 

possibilities of creating a memory trace and more facets of the stimulus to be encoded 

(and later on cued and subsequently retrieved). 

There are fewer well-established experimental manipulations known to have a 

robust effect on response bias. A relatively reliable means of producing such an effect is 

manipulating payoff at the time of the decision, which is thought to be when response 

bias most likely plays a role in the decision-making process (Tanner & Swets, 1954; 

Taub, 1965; Taub & Myers, 1961). In a yes/no task, such as a recognition test phase, this 

would involve informing the subject that one response (either “yes” or “no”) would be 

associated with a higher reward in the case of a correct response and a lower loss in the 
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case of an incorrect response. If subjects are responding optimally and recognition 

judgments occur according to a signal detection (evidence accumulation) paradigm, 

subjects should then shift their response criterion to require more or less evidence to 

make a “yes” or “no” response, depending on which response is favored by the current 

payoff condition.  

As previously discussed, the GLMM is a very effective method to examine 

correlations between signal detection parameters at the subject and/or item level. In the 

traditional by-subject approach (F1-analysis) or in the alternative, less common by-item 

approach (F2-analysis), variance and covariance at the level that is being aggregated 

across is ignored. Therefore, in the traditional SDT analyses without crossed random 

factors, a simultaneous more comprehensive evaluation at both levels is hardly possible 

and variation at the ignored level is likely to increase statistical error, possibly especially 

in the random effects (variance and covariance parameters). 

Previously, authors suggested that a criterion shift can depend on item-specific 

memorability (e.g., see Hirshman, 1995). Memorability of items in those studies is often 

systematically varied, e.g. using strength manipulations. However, even when exerting 

experimental control, a group difference in C between item memorability conditions does 

not in itself indicate whether subjects knowingly shift their response criterion according 

to task demands and/or whether criterion placement is influenced by a memorability 

assessment of the item at the time it is probed. If memorability and response bias co-vary, 

as one might assume based on the above findings, there should be a correlation between 

d’ and C at the subject level, item level, or both.  

A subject-level correlation possibly indicates that subjects set response criteria 

based on their (sub-)conscious perception of their ability to discriminate studied and new 
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items. Conversely, an item-level correlation could indicate that subjects place their 

response criterion anew for each trial, based on how memorable the item is. Certainly, 

these alternatives are not mutually exclusive. Either, both, or neither could be true. The 

GLMM provides a very useful framework to examine exactly that possibility. 

Method 

Participants. To satisfy the counterbalancing scheme, a multiple of 64 subjects 

were needed. To increase statistical power, 128 participants were to be tested. As 14 

participants did not meet all inclusion criteria, a total of 142 subjects were recruited from 

the student research participation pool at the University of Victoria until the intended 

number was reached. Participants had a mean age of 20.6 (SD = 3.4), 98 identified as 

“female”, 28 as “male”, and two as “other.” 

Apparatus. Participants were tested in sessions of up to 15 participants each in a 

computer lab on campus. The experiment was implemented as an HTML/JavaScript 

procedure using jsPsych (de Leeuw, 2015). This programming library is natively 

compatible with most current internet browsers and has been shown to be as sensitive to a 

variety of experimental manipulations as proprietary offline competitor solutions (de 

Leeuw & Motz, 2016). Even though the procedure was to be conducted in a controlled 

computer lab environment on identical workstations, this implementation was chosen to 

facilitate replicability. 

Stimuli. The stimuli used in the experiment were 336 common English concrete 

nouns (see Appendix A). The majority of words was taken from the English Lexicon 

Project (Balota et al., 2007), of high frequency, and 3 to 8 letters in length. Item lists were 

assembled and manually amended so that there were 84 in each group of the 2 

(processing depth) × 2 (correct response) design. Sixteen of the items (four from each 
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group) were selected as buffer items. For all subjects, the same 16 items were used as 

buffer items. The items were assigned randomly to each block for each participant with 

the constraint that there would be one item from each item group assigned to each block. 

Two buffer items were displayed at the beginning and the other two at the end of the 

study list. This leaves 320 critical items (80 of each group) to be distributed across the 

four blocks for each participant. 

Procedure. After participants gave their consent, they received instructions for 

the first part of the experiment. The experiment was divided into four blocks, each 

consisting of a study (encoding) phase, a delay task, and a test (recognition) phase. In 

total, each participant completed four blocks. Each block was assigned to either deep or 

shallow processing at study and to either low or high payoff at test. The conditions were 

crossed so that each combination of processing depth × payoff was assigned to exactly 

one block (see Table 1). 

Table 1 

Combinations of experimental conditions 

Block LOP Payoff  

A shallow low 

B shallow high 

C deep low 

D deep high 
 

The sequence of blocks was counterbalanced with a partial Latin square. The 

sequences ABCD, BCDA, CDAB, DABC, ACBD, CBDA, BDAC, and DACB each were 

assigned to an equal number of participants. This ensured that (a) half of the participants 

started with the deep, the other half with the shallow processing condition, (b) half of the 
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participants started with the low, the other half with the high payoff condition, (c) half of 

the participants received an alternating payoff sequence, and (d) half of the participants 

received an alternating processing depth sequence. 

Items were assigned to blocks so that each item appeared equally often in each 

LOP × payoff × order × old/new status combination across all subjects. Number of 

correct yes/no responses was counterbalanced within each block, so that half of the items 

in each study phase required a “yes” response and the other half required a “no” response. 

Study phase. Before the study phase of each block, subjects received instructions 

as to how words should be evaluated during the study phase. Half of the blocks followed 

a shallow-processing instruction (“More consonants than vowels?”), whereas the other 

half followed a deep-processing instruction (“Occurs naturally?”). 

During the study phase, items that had been assigned to the old status condition 

were displayed one at a time. The task was to make yes/no judgments for each item based 

on the LOP question that had been assigned to that block. The question would be 

introduced before the start of the study phase and displayed on the screen for the entire 

duration of the phase. When participants saw the question “More consonants than 

vowels?” they were to respond “yes” if the following word contained more consonants 

than vowels (a, e, i, o, u, or y) or “no” if there were an equal number or fewer consonants 

than vowels. For words following the question “Occurs naturally?” they were to respond 

“yes” if the thing or being occurred naturally without human fashioning or “no” 

otherwise. 

For each word in the study phase, participants had 3,500 ms to make a judgment. 

If they did not respond within that deadline, a message (“Too slow!”) appeared for 2 

seconds and the next trial followed immediately thereafter. Participants were informed in 



 35 

the instructions for the study phase that there is a deadline but that there would be ample 

time for their judgment. Speed was not emphasized. 

Delay task. For the delay task in each block, participants viewed 64 pairs of 

geometric stimuli and were asked to match them according to shape or color. There were 

16 unique figures used in this task. The shapes were pyramid, diamond, circle, and 

square. The colors used  were red, blue, orange, and green. Each pair of stimuli had either 

matching colors or matching shapes but never both. The task was to indicate whether the 

stimuli matched in shape or color. For half of the pairs, the correct response was “Same 

shape”, whereas for the other half the correct response was “Same color.” 

Test phase. During the test (recognition) phase, the 40 “old” items (44 items less 

the four buffer items) were presented intermixed with the 40 “new” items assigned to that 

block. Before the test started, participants were instructed on which response strategy to 

use. For each word in the test phase, participants had 5,000 ms to make a recognition 

judgment. If they did not respond within that deadline, the next trial followed. 

There were two different strategies but participants were only given one for each 

block. In the low payoff condition, a liberal response pattern was encouraged by 

increasing gain for a correct “yes” and loss for an incorrect “no.” In the high payoff 

condition, a conservative response pattern was encouraged by increasing gain for a 

correct “no” and loss for an incorrect “yes.” 

The payoff ratio used was 20:2 (for complete payoff matrix see Table 2). This 

yields a theoretical maximum of 3520 points9 in total or 880 in each block. After each 

                                                
9 In each block, there are 40 items for which the correct response yields 20 points and 
another 40 items for which 2 points can be gained. This yields a total of 4 × (40 × 20 +
40 × 2) = 3520 points. 
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response, immediate feedback was displayed along with the amount of lost or gained 

points and the total points in the current block. 

Table 2 

Payoff matrix used for the recognition test blocks. 

Payoff Status “Yes” “No” 

conservative old +2 –2 

 new –20 +20 

liberal old +20 –20 

 new –2 +2 

Note. Points gained (positive values) or lost (negative values) for recognition judgments 
(“yes” or “no”) depend on the item’s old/new status and the payoff condition of the 
respective test block. 

In addition to instructions before the test, participants were reminded of the payoff 

condition throughout the test phase by presenting words either in green or red font to 

indicate the low and high conditions, respectively (analogous to a traffic light). Moreover, 

whenever they made the costly error (i.e., miss in the low condition or false alarm in the 

high condition), the feedback after the trial was emphasized by highlighting it with white 

font in a red box. 

Counterbalancing. Items were counterbalanced across all within-item conditions 

(block order, low/high payoff, old/new status, shallow/deep LOP) and appeared equally 

often in all combinations of experimental manipulations across all subjects. 

Counterbalancing was also used to assign subjects to the between-subject condition of 

block order and to ensure that each subject was presented an equal number of items in 

every possible combination of within-subject manipulations (low/high payoff, old/new 

status, shallow/deep LOP, correct deep LOP response, correct shallow LOP response). 
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Data analysis 

Exclusion criteria. Subjects were only included in data analyses if they met all of the 

following criteria: 

1. Test-phase accuracy (proportion of correct recognition judgments) not less than 

60%. 

2. Delay-task accuracy not less than 90%. 

3. Study-phase accuracy (proportion of correct LOP judgments) not less than 60%. 

4. In no test-phase payoff × LOP cell are more than 95% of the responses “yes” or 

“no”, regardless of old/new status, i.e. the “yes” rate in each of those cells should 

be between 5% and 95%. 

5. In no study-phase LOP condition are more than 95% of the responses “yes” or 

“no” , i.e. the “yes” rate in both LOP conditions at study should be greater than or 

equal to 5% and less than or equal to 95%. 

After each testing session, newly collected data were screened using the criteria 

above. If a subject’s data did not meet all of the inclusion criteria, all of their responses 

were excluded from further analyses and their experimental sequence was used to test a 

different subject. That way, a total of 14 subjects were excluded and subsequently 

replaced.  

In addition to the general exclusion criteria for subjects, filler trials as well as 

individual observations in the test phase with response latencies outside the range of 300-

5,000 ms were excluded. This also excluded observations for which no response was 

made within the response deadline of 5,000 ms. Thereby, 1.1% of the data were removed. 

Data excluded by this rule were not replaced. 
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Results 

On average, subjects took 46.5 min (SD = 3.8) to complete the entire procedure, including 

informed consent and debriefing. What follows are reports of descriptive and inferential 

statistics for the three parts of each block. The study and delay phases are briefly 

summarized and analyzed, while the analysis of main interest focuses on the test phase.  

Where p-values are reported, for the traditional by-participant approach, these are 

based on F- or t-tests. For LMMs, t-tests are based on the Satterthwaite (1941) 

approximation of degrees of freedom (Luke, 2017; Schaalje, McBride, & Fellingham, 

2002). 

Study phase. Responses in the deep processing condition were more accurate and 

faster than responses in the shallow processing condition (see Table 3). There was a 

significant effect of processing depth on response time (M = 374.0, F(1, 127) = 538.8, 

p < .001) and on accuracy (M = –0.13, F(1, 127) = 134.0, p < .001) in the study phase. 

Response times were also analyzed using a linear mixed model fitted to the unaggregated 

correct responses with random factors subject and item, and a maximal fixed and random 

effect specification for intercept and LOP slope10. That analysis yielded comparable 

results (see Tables 4 and 5). The finding that participants took longer to respond to words 

in the shallow processing condition may seem counterintuitive but is plausible under the 

assumption that a shallow processing by counting letters can take more time than a deep 

semantic question. This is supported by a post-hoc linear mixed-effects regression that 

indicates response times for the same words were modulated by word length in the 

shallow processing condition (t(331.8) = 3.87, p < .001) but not in the deep processing 

                                                
10 A maximal specification (Barr et al., 2013) implies that intercepts and slope(s) are 
specified as fixed effects as well as random effects (plus correlation parameters between 
all random effects) in both random factors. 
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condition (t(337.6) = 0.07, p > .05). However, even after including that modulation, there 

is still a main effect of processing depth on response time (b = 183.4, t(324.4) = 5.5, 

p < .001). 

Delay phase. The mean accuracy in the delay phase was very high (M = .97, SD = 

.02, 95% CI [.95, .98]). On average, participants made the discrimination judgments 

within 623 ms (SD = 111.8, 95% CI [604.6, 644.3]). 

Test phase. Of main interest was the analysis of the yes/no recognition judgments 

made in the final phase of each block. Table 6 reports the by-subject summary statistics 

for hits, false alarms and response latencies. Note that response latencies are not further 

analyzed. The following analyses focus on accuracy (hit rates and false alarm rates).  

Table 3 

Subject-level summary statistics for the study phase. 

LOP Acc. 95% CI RT 95% CI 

Shallow 0.79 (0.14) [0.76, 0.82] 1294.8 (184.1) [1262.8, 1326.7] 

Deep 0.93 (0.06) [0.92, 0.94] 920.8 (124.8) [899.14, 942.4] 

Note. Accuracies are proportions of correct responses. Response times are latencies for 
correct responses only. Statistics shown are subject-level means, standard deviations in 
parentheses, and confidence intervals. 

Table 4 

LMM random effects for latencies of correct study-phase responses. 

Random effect Var SD r 

Item 6757 82.2  

 LOP 25160 158.6 .28 

Subject 16490 128.4  

 LOP 32781 181.1 .43 

Residuals 79678 282.3  

Note. Variances and SDs are reported for random slopes and intercepts. The correlation 
parameter (r) reports the correlation between the random intercept and slope on the 
respective level. 
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Table 5 

LMM fixed effects for latencies of correct study-phase responses. 

Fixed effect Estimate SE df t p  

Intercept 1113.3 12.61 168.54 88.30 < 0.001 *** 

LOP 393.1 19.38 206.37 20.29 < 0.001 *** 

Note. The df are estimated using the Satterthwaite (1941) approximation. Significance 
codes: * p < .05, ** p < .01, *** p < .001 

Traditional analysis. In the traditional analysis, yes/no responses are aggregated 

across items by subjects, so that for each subject there is one hit rate and one false alarm 

rate for each of the four conditions of LOP (shallow vs. deep) × payoff (conservative vs. 

liberal). H and F rates were corrected so that none fell outside the range of [ 1
80 , 79

80], based 

on Macmillan and Creelman’s (2008) method and the number of 40 items within each 

cell of the LOP × payoff × old/new status design. A by-subject summary of these 

accuracy rates can be found in Table 7. 

Table 6 

By-subject summary statistics (means and 95% CIs around means) for hit rates (H), false 
alarm rates (F) and correct response latencies (RT) in the recognition/test phase. 

LOP Payoff H 95% CI F 95% CI RT 95% CI 

deep conservative .85 [.82, .87] .12 [.10, .14] 1092.1 [1055.7, 1128.5] 

 liberal .94 [.92, .95] .30 [.26, .33] 1034.7 [1004.1, 1065.3] 

shallow conservative .60 [.57, .64] .19 [.17, .22] 1140.6 [1105.2, 1176.1] 

 liberal .84 [.82, .86] .49 [.45, .52] 1069.9 [1028.7, 1111.2] 
  

Before SDT parameters were analyzed, the variance of the new distribution was 

estimated using the linear model introduced in Eq. 23 (p. 18). As the approach requires at 

least two isosensitive pairs of H and F, it was not possible to estimate variance 

parameters for every single condition. Instead, variance parameters were estimated for 
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different levels of processing depth and assumed to be unaffected by levels of payoff. 

This yielded 𝜎𝑛𝑒𝑤 ≈ 0.8658 for shallow and 𝜎𝑛𝑒𝑤 ≈ 0.7381 for deep processing, which 

are within a range fairly commonly found among healthy subjects (for a review, see 

Yonelinas & Parks, 2007). The standard deviation for the “old” distributions was fixed at 

𝜎𝑜𝑙𝑑 = 1. By accounting for unequal variance, the skew of the observed ROCs was 

corrected (see Figure 7). 

 
Figure 7. ROC curves based on response rates as observed (left) or corrected for unequal variance (right). 
The skew for the observed ROCs is accounted for by the additional variance parameters. 

Based on these estimated variance parameters and the corrected hit and false 

alarm rates, C and d’ were calculated for each subject and condition using Equations 14 

and 15. A summary of subject means of C and d’ can be found in Table 7. At the subject 

level, C and d’ were not correlated (p > .05), whereas a significant correlation was present 

at the item level (r = .24, 95% CI [.13, .34], p < .002). However, as the previous 

simulations suggested, even though it can be inferred from this analysis that C and d’ are 

probably correlated across items, it is quite possible that the confidence interval does not 

contain the true correlation. 
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The estimates were analyzed using ANOVA, using either C or d’ as the DV and 

the categorical predictors LOP and payoff as IVs. There was an effect of LOP on d’ 

(F(1, 127) = 414.8, p < .001), with a higher sensitivity for deeply studied items compared 

to shallowly studied items, but neither the main effect of payoff nor the interaction of 

payoff and LOP were reliable (Fs < 1.0). For C, both main effects of LOP (F(1, 127) = 

107.6, p < .001) and payoff (F(1, 127) = 316.4, p < .001) as well as their interaction 

(F(1, 127) = 41.3, p < .001) were significant. Expectedly, the criterion was higher (more 

conservative) for the conservative payoff condition in which false alarms were costlier 

than misses and correct rejections were more rewarding than hits. The main effect of 

processing depth and the interaction indicated a smaller payoff effect on C in the deep 

processing blocks. 

Table 7 

By-subject summary statistics (means and 95% CIs around means) for d’ and C based on 
each subject’s H and F rates in each condition in the recognition/test phase. 

LOP Payoff C 95% CI d’ 95% CI 

deep conservative –0.09  [–0.13, –0.05] 2.14 [2.01, 2.27] 

 liberal –0.60 [–0.64, –0.56] 2.11 [1.99, 2.22] 

shallow conservative 0.27 [0.20, 0.33] 1.13 [1.03, 1.23] 

 liberal –0.52 [–0.57, –0.45] 1.11 [1.01, 1.19] 
 

GLMM analysis. Models were fit using the glmer method from the lme4 package 

(Bates, Maechler, Bolker, & Walker, 2015) in R (R Core Team, 2016) with a slightly 

modified probit link function to implement unequal variance based on the previously 

estimated variance parameters (see Appendix B). 

In GLMM fitting and in mixed-effects model fitting in general, the researcher has 

to consider both the fixed and random effects structures of the model. Fixed effects can 
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be quite simply derived from the experimental design. The choice of fixed effects is 

typically similar or even identical to the reasoning in ANOVAs, as discussed earlier. In 

the study reported here, there are three experimental conditions for the analysis of test-

phase accuracy: level of processing (LOP, deep vs. shallow), payoff (conservative vs. 

liberal), and target status (old vs. new). This simple 2 ´ 2 ´ 2 design can be implemented 

in a linear regression with eight coefficients: intercept, three main effects (LOP, payoff, 

and status), three two-way interactions (LOP ´ payoff, status ´ LOP, status ´ payoff) and 

one three-way interaction (status ´ LOP ´ payoff). In the linear modeling approach to 

SDT, as discussed earlier herein, each of those terms represents either a grand mean or 

condition effect on either response bias or sensitivity (see pp. 17 ff. for more details). 

As the baseline, in accordance with the parsimonious modeling approach 

(Matuschek et al., 2017), a minimal random-effects model (Model 1) was chosen with 

only item-level and subject-level variance components for the grand means of C and d’ 

(four variance components in total, AIC = 37737, loglik = –18857). The model fit 

increased significantly after including correlation parameters between C and d’ at both 

levels in Model 2 (AIC = 37728, loglik = –18850, df = 2, c2 = 27.86, p < .001). In a 

further step, subject-level and item-level variance components for the effects of 

processing depth and payoff on C and d’ (but not their interactions) were introduced in 

Model 3. The model improved fit but did not converge, possibly due to 

overparameterization. After removing the item-level random effects of LOP on C and 

payoff on d’, Model 4 converged and was a significantly better fit to the data than Model 

2 (AIC = 36905, loglik = –18433, df = 6, c2 = 748.20, p < .001). For the complete model 

fitting process, including the original R output, see Appendix C. 
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The resulting random-effects structure gives insight into how responses vary with 

regard to sensitivity and response bias across either items or subjects. A very salient 

difference is that more variance in response bias is apparently captured at the item level 

(SD = 0.21) than at the subject level (SD = 0.13), F(319, 127) = 2.65, p < .001. Moreover, 

there is a moderate correlation between C and d’ at the item level, 95% CI [.18, .46] but 

not at the subject level, 95% CI [–.18,  .28]. Note that as the lme4 fitting routine was not 

able to estimate likelihood profiles for the resulting model, very likely due to the 

hardcoded unequal variance fix, CIs were bootstrapped using the bootMer method (Bates 

et al., 2015; Davison & Hinkley, 1997; DiCiccio & Efron, 1996). 

Note that given the results from the model simulations (pp. 21 ff.), this is very 

reliable evidence that the real correlation at the item level is significantly positive, i.e. 

items that are recognized/rejected more accurately tend to co-occur with more 

conservative responding. It is noteworthy that the confidence intervals from the 

traditional analysis and the GLMM analysis do overlap but it is likely that the former 

underestimated the true correlation, given the simulation results. Evidence at the subject 

level does not suggest a correlation between C and d’. 

The fixed effects (see Table 9) capture the grand means of C and d’ as well as 

condition effects. In line with the traditional analyses, response bias (C) was on average 

slightly conservative, and significantly more so for the conservative than for the liberal 

payoff condition. The significant effect of LOP and the payoff × LOP interaction indicate 

the same pattern as in the traditional analysis, which is a dampened effect of payoff in the 

deep processing blocks. Sensitivity (d’) was unsurprisingly high on average and 

significantly higher for the deep than for the shallow processing blocks. 
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Table 8 

Random effects of the final SDT-GLMM for test-phase responses. 

Random effect SDT equivalent Var SD r 

Item C (item) 0.045 0.213  

 Payoff  Payoff 0.002 0.039  

 LOP  LOP – –  

 Status d’ (item) 0.142 0.377 .33 

 Status × Payoff  Payoff – –  

 Status × LOP  LOP 0.060 0.246  

Subject C (subject) 0.017 0.132  

 Payoff  Payoff 0.163 0.403  

 LOP  LOP 0.033 0.182  

 Status d’ (subject) 0.179 0.423 .09 

 Status × Payoff  Payoff 0.142 0.377  

 Status × LOP  LOP 0.240 0.490  

Note. Variances and SDs are reported for random slopes and intercepts. See p. 20 for an 
overview of SDT parameter equivalences. The correlation parameter (r) reports the 
correlation between the random intercept (C) and the random slope of old/new status (d’) 
for each random factor. 

Table 9 

Fixed effects of the final SDT-GLMM for test-phase responses. 

Fixed effect SDT equivalent Estimate SE z p  

Intercept C (mean) –0.223 0.018 –12.14 < .001 *** 

Payoff  Payoff 0.674 0.039 17.39 < .001 *** 

LOP  LOP 0.207 0.023 9.04 < .001 *** 

Payoff × LOP  Payoff × LOP 0.253 0.030 8.34 < .001 *** 

Status d’ (mean) 1.661 0.046 36.27 < .001 *** 

Status × Payoff  Payoff 0.048 0.045 1.07 .287  

Status × LOP  LOP –1.043 0.056 –18.60 < .001 *** 

Status × Payoff × LOP  Payoff × LOP 0.007 0.061 0.12 .908  

Note. See p. 20 for an overview of SDT parameter equivalences. Reported are parameter 
estimates (b), standard errors (SE), z-values, and according p-values. Significance codes: 
* p < .05, ** p < .01, *** p < .001 
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The estimates in Table 9 are comparable to those in Table 7, with the difference 

that the GLMM is specified so that it captures grand means and condition effects 

(difference between the two conditions) whereas the traditional approach computes 

means for each condition separately. For example, the response bias in the deep 

conservative condition is –0.09 in the traditional approach. In accordance with the SDT 

parameter equivalences (p. 20), in the GLMM, this can be derived from the grand mean 

response bias (–0.22) and the sum of the products of contrast code11 times the effect size 

(−0.22 + 1
2 × 0.67 − 1

2 × 0.21 + (− 1
2 × 1

2) × 0.25 = −0.04). Sensitivity for the shallow 

liberal condition (1.11 in the traditional approach) would also be qualitatively and 

quantitatively comparable to the GLMM estimate (1.66 − 1
2 × 0.05 + 1

2 × (−1.04) +

(− 1
2 × 1

2) × 0.01 = 1.11). 

 
Figure 8. Plot of Pearson residuals against fitted values of the final GLMM (Model 4).  

                                                
11 For contrast codes, see Appendix D. 
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The overall model fit was evaluated by assessing the plot of Pearson residuals 

against fitted values. As visible in Figure 8, the mean plotted residuals are evenly 

distributed across the entire range of fitted values. Furthermore, the uniformity test of the 

model indicated no significant overdispersion (p > .14). 

One may also wish to add the random effect estimates to the estimates above to 

acquire subject and item estimates for the corresponding cell or condition means, or even 

for individual observations by adding both subject and item-level effects. The resulting 

so-called BLUPs (best linear unbiased predictors) are not illustrated above but they can 

be derived relatively easy with the ranef command in R. 

Discussion 

The majority of statistics yielded the expected results, and the GLMM results were 

directly comparable to those from the traditional approach in all cases. Interestingly, all 

relevant statistics were derived from one final GLMM model in contrast to the traditional 

approach, where a series of steps was necessary to estimate the statistics of interest. This 

is a very important outcome as it validates the GLMM approach. 

As far as the pattern of significant effects is concerned, expectedly, there was a 

significant effect of processing depth but no effect of payoff nor an interaction on d’. This 

can be interpreted as directional evidence for sensitivity being affected by the processing 

depth at study but not by strategic payoff decisions at test. Concerning response bias, both 

main effects as well as the interaction were significant. As detailed above, the effect of 

payoff on response bias could mean that response criterion can be shifted according to 

payoff instructions. However, the effect of processing depth and the interaction suggest 

that the effect of payoff on response bias may be modulated by processing depth, so that 

for deeply processed lists, there is a smaller criterion shift (see Hirshman, 1995 for such 
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an indication). This could be because there is less room for the criterion to effectively 

move and possibly less motivation to shift the criterion, given that accuracy is already 

very good in the deep condition and the correct response always yields more points than 

the incorrect response. 

Even though the effect of processing depth and the interaction are not standard 

results for response bias and were therefore not predicted, it is possible that they arose 

due to the experimental design and the resulting high overall accuracy in the deep 

processing condition, where there was far less room for an effective criterion shift (see 

Table 7). There are at least three possible sources for these unexpected results: a subset of 

subjects or items with near-ceiling performance, overly strong sensitivity overall, or an 

excessively strong processing depth manipulation.  

To evaluate whether either the item-level correlation or the interaction of payoff 

and processing depth on response bias might be a spurious side effect of a few subjects or 

items with near-ceiling accuracy, two separate post hoc analyses were performed. In the 

first, all subjects that had more than 38 correct rejections or 38 hits in any block were 

excluded, and in the second, all items that were correctly rejected or correctly identified 

more than 30 times in any condition across all subjects were excluded. 

Neither subset yielded a meaningfully different pattern of results using the same 

analysis. However, even though individual subjects and items were excluded, the 

experimental manipulations were still very strong overall. The unexpected interaction 

could therefore be due to the experimental design as a whole and not only attributable to a 

few outliers among subjects or items. 

It thus seems necessary to modify the applied experimental paradigm in order to 

reduce overall memory strength and encourage subjects to apply a criterion more 
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effectively. In principle, it would be a useful and possibly sufficient modification to 

change processing depth and payoff to between-subject manipulations, thereby increasing 

list lengths. As increasing list length is likely to reduce overall sensitivity and the 

processing depth manipulation has been found to be highly effective, this could yield 

more useful results. If the interaction of processing depth and payoff on response bias was 

a side effect of the difficulty of effectively shifting a response criterion when memory 

strength is a more useful response heuristic, the interaction should be reduced or even 

rendered statistically insignificant if overall sensitivity is reduced. Undoubtedly, 

exhibiting the GLMM approach with standard benchmark results would be a more 

informative demonstration, potentially suitable for a larger-scale instructive publication 

on this method. 

Concerning the item-level correlation, there does not appear to be any 

contemporary process model of recognition memory which accommodates item-specific 

criterion placements with or without a link to that same item’s discriminability. However, 

the item-level correlation of C and d’ could indicate that subjects require more evidence 

strength for those items that are generally more easily recognized/rejected. There are at 

least two different processes that could potentially generate such a pattern, both of which 

are discussed as part of the following section (pp. 52 ff.) 
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Conclusion 

In the course of this thesis, I discussed a relatively novel approach to SDT analyses, 

namely in a GLMM framework. In a multitude of aspects, the traditional approach 

performs inefficiently compared to the GLMM and may even systematically distort 

certain statistics, particularly correlations of model parameters. 

The empirical item-level correlation between response bias and sensitivity is of 

particular relevance for sparking more comprehensive approaches to recognition memory 

research that are more sensitive to item effects. Furthermore, the framework offers 

various possibilities to extend the method to even more flexible, informative, and precise 

analyses. Directions for future empirical and theoretical work are briefly noted below. 

Justification of a shift toward GLMMs 

One might argue that the GLMM approach does not offer substantial advantages 

compared to the traditional by-subject (or by-item) approach and thus that a switch is not 

justified. However, when it comes to such evaluations, it is important to consider the 

justification of both added objective complexity by means of goodness of model fit and 

subjective complexity by means of added effort for the researcher. 

Concerning model fit, it has been demonstrated herein and observed in numerous 

other analyses that the GLMM is usually a better fit to the data than a traditional by-

participant or by-item model that aggregates across the other random factor. Note, 

however, that there is not just one GLMM. For one dataset, one can design multiple 

GLMMs of differing complexity, varying elements such as which slopes are represented 

as random slopes, which correlations are modelled, etc. The maximal model, including all 

within slopes as random slopes and all possible correlations between those at both the 

item and subject level, is oftentimes not supported by the data (as demonstrated herein) 
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and can consequently lead to false conclusions. One should instead try to find the best-

fitting model that is supported by the data (e.g., as discussed in Matuschek et al., 2017). 

Following such a GLMM fitting approach, it is technically possible to conclude 

that no item-level or subject-level random effects are supported by the data, in which case 

the traditional by-participant or by-item aggregating approach is objectively legitimate. 

Nevertheless, this is unlikely to occur with real subjects and meaningful items. 

On the more subjective side, a researcher might be reluctant to use this approach 

because these analyses are ostensibly more effortful to conduct. Indeed, the GLMM 

approach requires that the researcher acquaint themselves with a statistical technique that 

may be new to them. Given, however, that linear mixed models are very useful in many 

other applications as well, the effort of familiarizing oneself with the technique is 

negligible compared to the gained possibilities. It should be in the interest of any 

researcher to increase statistical power of their analyses to avoid mistakenly aborting 

research projects due to false results or publish these to find them stir undue scientific 

discourse. 

Suggested directions to investigate item effects 

There are at least two potential underlying mechanisms that could produce an item-level 

correlation of response bias and sensitivity. Whereas one mechanism requires some 

degree of (sub-)conscious assessment of item memorability, the other avoids such a 

constraint. 

The former mechanism presumes that the subject places their criterion following 

an initial assessment of item memorability. For this mechanism to be functional, it is 

crucial that subjects have some understanding of item memorability, at least 

subconsciously. Whenever an item would be presented in the recognition test phase, the 
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subject would assess the item-specific memorability, i.e. as to evaluate the item according 

to the question “Had I seen this before, would I recognize it now?” If they encounter a 

highly memorable item, they would set a higher criterion, whereas they would set a lower 

criterion for less memorable items. 

The other mechanism, which may or may not co-occur with the previously 

mentioned one, does not necessarily require that the observer be aware of the item’s 

memorability but it does account for some correlation between response bias and 

discriminability. Note that most random-walk or evidence accumulation models assume 

that once a response boundary is reached, the associated response is made. In most of 

these models, said boundary is presumably constant (or if mapped as a function of time, a 

horizontal line). Consider, however, a non-linear, collapsing boundary (e.g., see Hawkins, 

Forstmann, Wagenmakers, Ratcliff, & Brown, 2015; Voskuilen, Ratcliff, & Smith, 2016) 

for either response or both, that approaches an asymptote over time. In other words, the 

threshold amount of evidence necessary to make a specific response, might change over 

time, so that for early responses more evidence is necessary than for later responses. As 

faster responses could be responses with higher discriminability (i.e., steeper drift rates in 

a diffusion model for example), this could cause a correlation between item memorability 

and response bias. 

In the latter mechanism, the observer does not have to be aware of the observed 

item’s memorability, but it might be necessary to take the additional temporal dimension 

into account. The processes that give rise to drift in evidence accumulation in the first 

place (e.g., memory strength) might be related or possibly even identical to those that lead 

to a more conservative or more liberal response bias. It might be worth considering 

modifications of a collapsing boundary diffusion model to test the latter mechanism, i.e. 
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whether an additional boundary drift parameter significantly increases goodness of model 

fit. However, the two proposed mechanisms are not necessarily mutually exclusive, 

which makes it difficult to distinguish them solely based on behavioral evidence. 

Extending the GLMM approach 

The approach presented herein used maximum-likelihood fitting in the lme4 package in 

R, but it is widely generalizable across statistical frameworks. Generally, it is possible to 

extend the approach into any class of generalized linear models, using any available 

fitting technique. Any application of the traditional approach to SDT can be implemented 

in the GLMM whereas the opposite is only true for a limited range of purposes. 

One such possible extension is to use generalized additive models (GAMs, Wood, 

2004, 2006). In these models, the researcher can allow model parameters to vary across a 

continuous covariate, such as time of the day, subject age, or trial number. For example. 

this type of analysis is a sophisticated and informative alternative to the commonly used 

quantile analyses of C and d’, in which researchers are interested in how C and d’ change 

over the time course of the procedure. In a traditional quantile analysis, the researcher 

calculates quantile means and analyzes linear trends between those. The typical question 

is whether means of quantiles differ significantly but it is not straightforward to calculate 

meaningful estimates for any given trial number in the sequence. 

The concept of a linear regression slope assumes that the difference in magnitude 

is the same for every equally-spaced step between two quantiles. Splines as used in 

GAMs, however, do not make necessarily make that assumption. They can potentially 

produce more meaningful estimates for the parameter extrapolations between quantiles 

and thusly yield reasonable estimates for any given trial number rather than mere 

quantile-level means. This is because the spline is fitted and smoothed as one unit over 
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the entirety of all trials instead of discarding the rest of the sequence when estimating the 

difference between two subsequent quantiles (which the traditional quantile analysis 

does). 

Another interesting extension to the GLMM approach to SDT is to use Bayesian 

methods instead of MLE. There have been a couple of recent developments in the 

statistical community that allow for effortless implementation of GLMMs in a Bayesian 

modeling framework, for example using the R package brms (Bürkner, 2017). In addition 

to the numerous advantages of Bayesian statistics, these frameworks also make it 

comparably easy to implement the estimation of unconventional model parameters such 

as the unequal variance parameter in SDT. 

Summary 

Altogether, it is an extremely worthwhile endeavor to consider investigating SDT in a 

GLMM framework. It is important to appreciate that the traditional approach is a 

potentially disadvantageous oversimplification of the estimation of C and d’ — which 

are, after all, parameters of a generalized linear model — and that there are numerous 

advantages to the GLMM approach that outweigh the slight additional effort. The added 

effort and complexity of the model is justified by the accompanying gains in statistical 

power and estimate precision. Within a single model, a multitude of research questions 

can be simultaneously attended to with a considerably high level of statistical precision. 

After thorough evaluation, there are only a few, mostly negligible drawbacks to 

the GLMM approach. Especially when the obstacles associated with estimating unequal 

variance are eventually overcome, potentially even in a Bayesian model fitting 

framework, it appears contrary to the researcher’s interest to refrain from adopting the 

GLMM approach to SDT. 
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Appendix A 

Model simulations 

For each of the 66 model parameter configurations, 100 datasets were simulated so that 

the true values should be able to be recovered from the data. Each dataset would consist 

of 𝑁𝑆 × 𝑁𝐼  simulated binary responses, each associated with either “old” or “new” item 

status. Within each dataset, levels of item status was counterbalanced across subjects and 

items, so that each subject was assigned an equal number of new and old trials and each 

item was assigned to old vs. new equally often across all subjects. 

All parameters, including fixed and random effects, were controlled. In a first 

step, variance-covariance matrices were constructed for both random factors so that the 

variance for C was set to 0.05 and for d’ to 0.15 for both. These were derived as a 

consistent average from previous GLMM analyses. The correlation at the subject level 

was set to 0.0 for all simulations and to the respective simulated true item-level 

correlation value. The resulting subject-level and item-level variance-covariance matrices 

were then used to simulate 𝑁𝑆  subject-level C and d’ effects as well as 𝑁𝐼  C and d’ 

effects. This was achieved by invoking the mvrnorm function of the MASS package 

(Venables & Ripley, 2002) in R. Item-level random-effects, for example, were generated 

as follows: 

ranef.items <- MASS::mvrnorm(n.items, mu=c(0,0), Sigma = matrix(c(var.c.items,cov.items,cov.items,
var.d.items), ncol=2), empirical=T) 

Using the linear GLMM notation (see Eq. 24), for each datum, the probability for 

a yes response was calculated. That is, for each datum, the probability was calculated as a 

function of fixed effects (irrelevant in the case of correlation simulations), item-level 

random effects, and subject-level random effects. Probabilities greater than or equal to .5 

were transformed to a “yes” response, while all other data were assigned a “no” response. 
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Once a dataset for a specific parameter configuration had been generated, the 

traditional approach for calculating the item-level correlation (and CIs) was as follows: 

1. Calculation of H and F by aggregating across all subjects for each item. 

2. Correction of incidental response rates at ceiling to be bounded between 

1
𝑁𝑆

 and 1 − 1
𝑁𝑆

. 

3. Calculation of C and d’ as a function of (corrected) H and F. 

4. Calculation of the Pearson product momentum correlation coefficient 

between C and d’ across items. 

The critical command to calculate the correlation in R was: 

r1 <- cor.test(t.items[,'C'], t.items[,'d'], alternative='two-sided', method='pearson') 

For the GLMM approach, a binomial probit model was fitted to the unaggregated 

data, containing the fixed effects C and d’, as well as subject-level and item-level random 

effects for those. Moreover, there was a correlation parameter between C and d’ at the 

item level but not for subjects because those are known to be uncorrelated in the 

simulated data and a correlation parameter could then lead to an unidentified model. 

While the point estimate for the correlation in the GLMM can be retrieved quite 

easily from the model summary, CIs were calculated from 95% HDRs (highest-density 

regions) retrieved from a likelihood profiling. 

r2 <- profile(g1, which=c(2,8), signames=F) # 2 and 8 refer to parameters to be profiled 

An analysis, either traditional or GLMM, was found to reject the null hypothesis 

(i.e., no correlation) whenever the 95% CI did not contain zero. The CI was found to 

contain the true value if it lay between the upper and lower bounds of the 95% CI. 
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Appendix B 

Stimulus Material 

No. Stimulus S D F 

1 ace N N N 
2 arena N N N 
3 avenue N N N 
4 beer N N N 
5 bike N N N 
6 blouse N N N 
7 boat N N N 
8 book N N N 
9 boot N N N 

10 cafe N N N 
11 camera N N N 
12 canoe N N N 
13 carafe N N N 
14 casino N N N 
15 cheese N N N 
16 city N N N 
17 coin N N N 
18 cookie N N N 
19 diary N N N 
20 dice N N N 
21 dime N N N 
22 door N N N 
23 engine N N N 
24 eraser N N N 
25 gate N N N 
26 guitar N N N 
27 house N N N 
28 hula N N N 
29 igloo N N N 
30 jail N N N 
31 jeep N N N 
32 jersey N N N 
33 kayak N N N 
34 key N N N 
35 keyboard N N N 
36 lane N N N 
37 marina N N N 
38 maze N N N 
39 museum N N N 
40 nail N N N 
41 nation N N N 

No. Stimulus S D F 

42 oven N N N 
43 page N N N 
44 pole N N N 
45 radio N N N 
46 rake N N N 
47 road N N N 
48 roof N N N 
49 room N N N 
50 saucer N N N 
51 shoe N N N 
52 soap N N N 
53 stereo N N N 
54 studio N N N 
55 subway N N N 
56 suitcase N N N 
57 suite N N N 
58 tape N N N 
59 vase N N N 
60 violin N N N 
61 weapon N N N 
62 wire N N N 
63 yarn N N N 
64 yurt N N N 
65 amulet N N N 
66 aquarium N N N 
67 buoy N N N 
68 driveway N N N 
69 icecube N N N 
70 kite N N N 
71 memorial N N N 
72 pie N N N 
73 pool N N N 
74 saucepan N N N 
75 sauna N N N 
76 seat N N N 
77 silo N N N 
78 teaspoon N N N 
79 toga N N N 
80 toy N N N 
81 alpaca N Y N 
82 antelope N Y N 

No. Stimulus S D F 

83 atom N Y N 
84 bean N Y N 
85 bear N Y N 
86 bee N Y N 
87 beet N Y N 
88 canary N Y N 
89 celery N Y N 
90 cougar N Y N 
91 coyote N Y N 
92 deer N Y N 
93 donkey N Y N 
94 dune N Y N 
95 eagle N Y N 
96 eel N Y N 
97 eye N Y N 
98 flea N Y N 
99 foal N Y N 

100 foot N Y N 
101 galaxy N Y N 
102 goat N Y N 
103 goose N Y N 
104 hay N Y N 
105 jaguar N Y N 
106 kale N Y N 
107 kangaroo N Y N 
108 lake N Y N 
109 leaf N Y N 
110 leek N Y N 
111 lion N Y N 
112 monkey N Y N 
113 moon N Y N 
114 mosquito N Y N 
115 mountain N Y N 
116 mouse N Y N 
117 nose N Y N 
118 oak N Y N 
119 ocean N Y N 
120 olive N Y N 
121 onion N Y N 
122 orange N Y N 
123 oyster N Y N 



 61 

No. Stimulus S D F 

124 parakeet N Y N 
125 parasite N Y N 
126 pea N Y N 
127 pear N Y N 
128 pigeon N Y N 
129 pony N Y N 
130 potato N Y N 
131 reef N Y N 
132 rose N Y N 
133 toad N Y N 
134 tomato N Y N 
135 tongue N Y N 
136 tortoise N Y N 
137 tree N Y N 
138 turkey N Y N 
139 universe N Y N 
140 valley N Y N 
141 weasel N Y N 
142 wood N Y N 
143 yam N Y N 
144 yolk N Y N 
145 banana N Y N 
146 bluejay N Y N 
147 guava N Y N 
148 kiwi N Y N 
149 lagoon N Y N 
150 lily N Y N 
151 loon N Y N 
152 meat N Y N 
153 oasis N Y N 
154 oat N Y N 
155 peanut N Y N 
156 poodle N Y N 
157 porpoise N Y N 
158 rosemary N Y N 
159 rye N Y N 
160 seaweed N Y N 
161 anvil Y N N 
162 banjo Y N N 
163 barn Y N N 
164 basement Y N N 
165 baton Y N N 
166 belt Y N N 
167 bolt Y N N 
168 bottle Y N N 

No. Stimulus S D F 

169 bowl Y N N 
170 brick Y N N 
171 broom Y N N 
172 brush Y N N 
173 bullet Y N N 
174 bus Y N N 
175 button Y N N 
176 camp Y N N 
177 candle Y N N 
178 cap Y N N 
179 car Y N N 
180 castle Y N N 
181 chapel Y N N 
182 church Y N N 
183 cigar Y N N 
184 clarinet Y N N 
185 desk Y N N 
186 farm Y N N 
187 fence Y N N 
188 jacket Y N N 
189 jet Y N N 
190 kettle Y N N 
191 mall Y N N 
192 map Y N N 
193 market Y N N 
194 match Y N N 
195 napkin Y N N 
196 pencil Y N N 
197 penny Y N N 
198 pill Y N N 
199 pistol Y N N 
200 plate Y N N 
201 prison Y N N 
202 raft Y N N 
203 ranch Y N N 
204 ribbon Y N N 
205 ship Y N N 
206 shovel Y N N 
207 sink Y N N 
208 skirt Y N N 
209 sleigh Y N N 
210 spoon Y N N 
211 stable Y N N 
212 street Y N N 
213 sword Y N N 

No. Stimulus S D F 

214 tack Y N N 
215 temple Y N N 
216 tent Y N N 
217 ticket Y N N 
218 tower Y N N 
219 trousers Y N N 
220 tunnel Y N N 
221 wagon Y N N 
222 wallet Y N N 
223 watch Y N N 
224 yacht Y N N 
225 badge Y N N 
226 bed Y N N 
227 bridge Y N N 
228 cardigan Y N N 
229 closet Y N N 
230 couch Y N N 
231 dress Y N N 
232 duvet Y N N 
233 fork Y N N 
234 glass Y N N 
235 lipstick Y N N 
236 medal Y N N 
237 mug Y N N 
238 valve Y N N 
239 wall Y N N 
240 window Y N N 
241 acorn Y Y N 
242 ant Y Y N 
243 apple Y Y N 
244 bison Y Y N 
245 bug Y Y N 
246 camel Y Y N 
247 cat Y Y N 
248 chestnut Y Y N 
249 cliff Y Y N 
250 cloud Y Y N 
251 cow Y Y N 
252 dingo Y Y N 
253 dog Y Y N 
254 dolphin Y Y N 
255 duckling Y Y N 
256 ferret Y Y N 
257 fig Y Y N 
258 fish Y Y N 
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259 flower Y Y N 
260 fly Y Y N 
261 fog Y Y N 
262 frog Y Y N 
263 goldfish Y Y N 
264 grass Y Y N 
265 horse Y Y N 
266 iceberg Y Y N 
267 insect Y Y N 
268 island Y Y N 
269 lemon Y Y N 
270 leopard Y Y N 
271 lizard Y Y N 
272 minnow Y Y N 
273 otter Y Y N 
274 owl Y Y N 
275 panda Y Y N 
276 parrot Y Y N 
277 pebble Y Y N 
278 pheasant Y Y N 
279 pig Y Y N 
280 planet Y Y N 
281 pond Y Y N 
282 puppy Y Y N 
283 python Y Y N 
284 rabbit Y Y N 

No. Stimulus S D F 

285 radish Y Y N 
286 raven Y Y N 
287 salmon Y Y N 
288 sardine Y Y N 
289 shark Y Y N 
290 sheep Y Y N 
291 shell Y Y N 
292 shrimp Y Y N 
293 sky Y Y N 
294 snail Y Y N 
295 snake Y Y N 
296 stallion Y Y N 
297 steer Y Y N 
298 tiger Y Y N 
299 walnut Y Y N 
300 walrus Y Y N 
301 wasp Y Y N 
302 wind Y Y N 
303 wolf Y Y N 
304 worm Y Y N 
305 boulder Y Y N 
306 broccoli Y Y N 
307 buffalo Y Y N 
308 bull Y Y N 
309 chickpea Y Y N 
310 chipmunk Y Y N 

No. Stimulus S D F 

311 cricket Y Y N 
312 feather Y Y N 
313 fennel Y Y N 
314 gorilla Y Y N 
315 lentil Y Y N 
316 lobster Y Y N 
317 moth Y Y N 
318 ostrich Y Y N 
319 raccoon Y Y N 
320 squid Y Y N 
321 axe N N Y 
322 bazooka N N Y 
323 magazine N N Y 
324 piano N N Y 
325 ear N Y Y 
326 eyebrow N Y Y 
327 moose N Y Y 
328 veal N Y Y 
329 clock Y N Y 
330 cloth Y N Y 
331 grenade Y N Y 
332 porch Y N Y 
333 giraffe Y Y Y 
334 lemming Y Y Y 
335 sparrow Y Y Y 
336 termite Y Y Y 

Note. All items are internally represented by a numeric identifier (No.), which is especially important for 
the counterbalanced assignment of items to conditions across subjects (see p. 36). The three rightmost 
columns specify the correct response (Y = “yes”, N = “no”) for the shallow (S – “More consonants than 
vowels?”) vs. deep (D – “Occurs naturally?”) processing conditions at study, and whether the items were 
critical for the analyses (F = N, items 1–320) or exclusively used as recency/primacy fillers (F = Y, items 
321–336).
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Appendix C 

Implementation of unequal variance 

The unequal variance of new vs. old distributions was implemented using a modified 

probit link function. Instead of the built-in probit link function, it passes additional sd 

arguments to the underlying qnorm and pnorm functions. Moreover, an additional summary 

is inserted into the R output which includes the mapping of fac to sd values. 

The function accepts a vector of type factor fac and a named numeric vector sds. 

The length of fac should match the number of rows of the data frame passed to glmer. 

The level set of fac must be identical with the names of sds. When called, the function 

transforms fac into an internal set of SD values. 

In the simplest case, where fac is the status column of the data frame and sds is a 

vector of named values old and new, the call scaled.probit(df$status, c(old = 1.0, 

new = 0.8)) will generate a probit link that assigns the standard deviations of 1.0 to old 

items and 0.8 to new items. 

scaled.probit = function(fac, sds) { 
  gsds = unname(sds[match(fac, names(sds))]) 
  rv = list( 
    linkfun = function(mu) qnorm(mu, sd=gsds), 
    linkinv = function(eta) pnorm(eta, sd=gsds), 
    mu.eta = function(eta) pmax(dnorm(eta, sd=gsds), .Machine$double.eps), 
    valideta = function(eta) T, 
    name = paste0('scaled.probit with SDs { ', paste(names(sds), sprintf('%0.4f',sds),  
       collapse = ', ', sep=' = '),' }') 
  ) 
  attr(rv, 'class') = 'link-glm' 
  return(rv) 
} 
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Appendix D 

Model fitting procedure and output in R 

Table 10 

Representations of model parameters 

Column code Type Description 

subject nominal Anonymized subject identifier 

item nominal Word item displayed 

lop binary Level of processing depth (shallow vs. deep) 

lopc numeric Contrast code for lop (deep = -0.5, shallow = 0.5) 

payoff binary Level of payoff condition (low vs. high) 

payoffc numeric Contrast code for payoff (low = -0.5, high = 0.5) 

status binary Level of item status (old vs. new) 

statusc numeric Contrast code for status (old = -0.5, new = 0.5)  

rt numeric Response latency in milliseconds 

response binary Yes/no recognition response (old vs. new) 

responsec numeric Binomial value for response (old = 0, new = 1) 

points integer Gained/lost points for response 

block integer Current block (1-4) 

correct boolean Is response == status? 

exclude boolean Is observation to be excluded (see p. 37)? 

 

Note that C (response bias) is represented as a negative intercept (see Eq. 22) in 

the linear model of SDT. However, the GLMM implementation in the lme4 package, one 

cannot specify a negative intercept. There are thus two ways to deal with this 

circumstance: 

(1) Specify contrast codes as previously explained but consider that all response bias 

estimates in the R output (intercept as well as all bias-related slopes) must be 

inverted (reverse sign). 
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(2) Invert all model parameters and the response variable except the intercept and 

interpret the R output as-is. 

Even though at first sight, the second alternative seems more complicated, 

numeric codes need to be assigned to the nominal variables anyway and human error is 

minimized if the output can be interpreted as-is. Therefore the enhanced dataset (*c 

columns were added in the data parsing routine) contains the following columns with one 

observation per row: 

SDs (sds) were estimated using the aforementioned regression method (see p. ): 

test.by.subject = ddply(test.trials, .(subject, lop, payoff), summarize,  
                  HR=max(1/80,min(1-1/80, sum(response=="old"&status=="old")/sum(status=="old"))),
  
                  zHR=qnorm(HR), 
                  FAR=max(1/80,min(1-1/80,sum(response=="old"&status=="new")/sum(status=="new"))),
  
                  zFAR=qnorm(FAR), 
                  rt=mean(subset(rt, correct))) 
test.by.subject$lopcc = sapply(levels(test.trials$lop), function(lev) as.integer(test.by.subject$l
op==lev)) 
test.by.subject.summary = ddply(test.by.subject, .(lop, payoff), summarize, zHR = qnorm(mean(HR)),
 zFAR=qnorm(mean(FAR))) 
test.by.subject.summary$lopcc = sapply(levels(test.trials$lop), function(lev) as.integer(test.by.s
ubject.summary$lop==lev)) 
 
zroc.slopes = lm(zHR~0+lopcc+lopcc:zFAR, data=test.by.subject.summary) 
 
sds = c(`old:deep`=1,`old:shallow`=1,`new:shallow`=unname(coef(zroc.slopes)['lopccshallow:zFAR']),
`new:deep`=unname(coef(zroc.slopes)['lopccdeep:zFAR'])) 
 
sds 
##    old:deep old:shallow new:shallow    new:deep  
##   1.0000000   1.0000000   0.9142789   0.7661138 

Model 1 (l0) was chosen as the baseline model and included only intercept and 

status slope at both the subject and item level: 

l0 = glmer(responsec~ 
             statusc*lopc*payoffc+ 
             (1+statusc||subject)+ 
             (1+statusc||item), 
           data = test.trials, 
           family = binomial(scaled.probit(test.trials$status:test.trials$lop, sds)), 
           control = glmerControl(optimizer = 'bobyqa')) 
print(summary(l0), corr=F) 
## Generalized linear mixed model fit by maximum likelihood (Laplace 
##   Approximation) [glmerMod] 
##  Family: binomial  
##  ( scaled.probit with SDs { old:deep = 1.0000, old:shallow = 1.0000, new:shallow = 0.9143, new:
deep = 0.7661 } ) 
## Formula:  
## responsec ~ statusc * lopc * payoffc + (1 + statusc || subject) +   
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##     (1 + statusc || item) 
##    Data: test.trials 
## Control: glmerControl(optimizer = "bobyqa") 
##  
##      AIC      BIC   logLik deviance df.resid  
##  19122.4  19217.4  -9549.2  19098.4    20192  
##  
## Scaled residuals:  
##      Min       1Q   Median       3Q      Max  
## -10.5812  -0.4957  -0.1994   0.5223   6.2977  
##  
## Random effects: 
##  Groups    Name        Variance Std.Dev. 
##  item      statusc     0.14422  0.3798   
##  item.1    (Intercept) 0.04423  0.2103   
##  subject   statusc     0.15580  0.3947   
##  subject.1 (Intercept) 0.01980  0.1407   
## Number of obs: 20204, groups:  item, 320; subject, 64 
##  
## Fixed effects: 
##                      Estimate Std. Error z value Pr(>|z|)     
## (Intercept)          -0.21726    0.02362  -9.197  < 2e-16 *** 
## statusc               1.62981    0.05791  28.143  < 2e-16 *** 
## lopc                  0.20058    0.02065   9.712  < 2e-16 *** 
## payoffc               0.62834    0.02073  30.310  < 2e-16 *** 
## statusc:lopc         -1.01087    0.04148 -24.372  < 2e-16 *** 
## statusc:payoffc       0.01076    0.04130   0.261    0.794     
## lopc:payoffc          0.18910    0.04118   4.592 4.38e-06 *** 
## statusc:lopc:payoffc  0.01395    0.08235   0.169    0.865     

Model 2 (l1) included correlations between random intercept and slope at both 

random factor levels: 

l1 = glmer(responsec~ 
             statusc*lopc*payoffc+ 
             (1+statusc|subject)+ 
             (1+statusc|item), 
           data = test.trials, 
           family = binomial(scaled.probit(test.trials$status:test.trials$lop, sds)), 
           control = glmerControl(optimizer = 'bobyqa')) 
print(summary(l1), corr=F) 
## Generalized linear mixed model fit by maximum likelihood (Laplace 
##   Approximation) [glmerMod] 
##  Family: binomial  
##  ( scaled.probit with SDs { old:deep = 1.0000, old:shallow = 1.0000, new:shallow = 0.9143, new:
deep = 0.7661 } ) 
## Formula: responsec ~ statusc * lopc * payoffc + (1 + statusc | subject) +   
##     (1 + statusc | item) 
##    Data: test.trials 
## Control: glmerControl(optimizer = "bobyqa") 
##  
##      AIC      BIC   logLik deviance df.resid  
##  19119.6  19230.3  -9545.8  19091.6    20190  
##  
## Scaled residuals:  
##      Min       1Q   Median       3Q      Max  
## -11.2902  -0.4941  -0.2051   0.5208   5.9668  
##  
## Random effects: 
##  Groups  Name        Variance Std.Dev. Corr 
##  item    (Intercept) 0.04208  0.2051        
##          statusc     0.13581  0.3685   0.29 
##  subject (Intercept) 0.01990  0.1411        
##          statusc     0.15565  0.3945   0.01 
## Number of obs: 20204, groups:  item, 320; subject, 64 
##  
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## Fixed effects: 
##                      Estimate Std. Error z value Pr(>|z|)     
## (Intercept)          -0.21067    0.02367  -8.901  < 2e-16 *** 
## statusc               1.62482    0.05768  28.169  < 2e-16 *** 
## lopc                  0.19599    0.02071   9.465  < 2e-16 *** 
## payoffc               0.62756    0.02069  30.329  < 2e-16 *** 
## statusc:lopc         -1.00772    0.04141 -24.332  < 2e-16 *** 
## statusc:payoffc       0.01962    0.04138   0.474    0.635     
## lopc:payoffc          0.18865    0.04109   4.591 4.42e-06 *** 
## statusc:lopc:payoffc  0.01525    0.08219   0.186    0.853     

Model 2 (l1) is a significantly better fit than the baseline model (l0) or variants 

excluding the correlation at either the subject level (l1a) or at the item level (l1b): 

anova(l0, l1, l1a, l1b) 
## Data: test.trials 
## Models: 
## l0: responsec ~ statusc * lopc * payoffc + (1 + statusc || subject) +  
## l0:     (1 + statusc || item) 
## l1a: responsec ~ statusc * lopc * payoffc + (1 + statusc || subject) +  
## l1a:     (1 + statusc | item) 
## l1b: responsec ~ statusc * lopc * payoffc + (1 + statusc | subject) +  
## l1b:     (1 + statusc || item) 
## l1: responsec ~ statusc * lopc * payoffc + (1 + statusc | subject) +  
## l1:     (1 + statusc | item) 
##     Df   AIC   BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## l0  12 19122 19217 -9549.2    19098                             
## l1a 13 19118 19220 -9545.8    19092 6.8318      1   0.008955 ** 
## l1b 13 19124 19227 -9549.2    19098 0.0000      0   1.000000    
## l1  14 19120 19230 -9545.8    19092 6.8289      1   0.008969 ** 

Model 3 (l2) added random slopes for the main condition effects on C and d’ 

(item-level and subject-level variance in experimental condition effects on response bias 

and sensitivity): 

l2 = glmer(responsec~ 
             statusc*lopc*payoffc+ 
             (1+statusc|subject)+ 
             (0+(lopc+payoffc)*statusc-statusc||subject)+ 
             (1+statusc|item)+ 
             (0+(lopc+payoffc)*statusc-statusc||item), 
           data = test.trials, 
           family = binomial(scaled.probit(test.trials$status:test.trials$lop, sds)), 
           control = glmerControl(optimizer = 'bobyqa')) 
print(summary(l2), corr=F) 
## Generalized linear mixed model fit by maximum likelihood (Laplace 
##   Approximation) [glmerMod] 
##  Family: binomial  
##  ( scaled.probit with SDs { old:deep = 1.0000, old:shallow = 1.0000, new:shallow = 0.9143, 
new:deep = 0.7661 } ) 
## Formula: responsec ~ statusc * lopc * payoffc + (1 + statusc | subject) +   
##     (0 + (lopc + payoffc) * statusc - statusc || subject) + (1 +   
##     statusc | item) + (0 + (lopc + payoffc) * statusc - statusc ||   
##     item) 
##    Data: test.trials 
## Control: glmerControl(optimizer = "bobyqa") 
##  
##      AIC      BIC   logLik deviance df.resid  
##  18707.8  18881.9  -9331.9  18663.8    20182  
##  
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## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -7.4212 -0.4819 -0.1807  0.4892  7.9922  
##  
## Random effects: 
##  Groups    Name            Variance Std.Dev. Corr 
##  item      payoffc:statusc 0.03311  0.1820        
##  item.1    lopc:statusc    0.02634  0.1623        
##  item.2    payoffc         0.01132  0.1064        
##  item.3    lopc            0.01118  0.1057        
##  item.4    (Intercept)     0.04690  0.2166        
##            statusc         0.15252  0.3905   0.32 
##  subject   payoffc:statusc 0.13646  0.3694        
##  subject.1 lopc:statusc    0.21457  0.4632        
##  subject.2 payoffc         0.17943  0.4236        
##  subject.3 lopc            0.04949  0.2225        
##  subject.4 (Intercept)     0.01929  0.1389        
##            statusc         0.15770  0.3971   0.05 
## Number of obs: 20204, groups:  item, 320; subject, 64 
##  
## Fixed effects: 
##                      Estimate Std. Error z value Pr(>|z|)     
## (Intercept)          -0.21668    0.02397  -9.040  < 2e-16 *** 
## statusc               1.70247    0.05909  28.811  < 2e-16 *** 
## lopc                  0.20485    0.03566   5.744 9.24e-09 *** 
## payoffc               0.65679    0.05755  11.412  < 2e-16 *** 
## statusc:lopc         -1.07593    0.07291 -14.756  < 2e-16 *** 
## statusc:payoffc       0.03386    0.06394   0.530    0.596     
## lopc:payoffc          0.19948    0.04248   4.696 2.65e-06 *** 
## statusc:lopc:payoffc  0.02343    0.08491   0.276    0.783     

Finally, Model 4 (l4) excludes the item-level payoff slope on sensitivity 

(statusc:payoffc) and the item-level LOP slope (lopc) on response bias: 

l4 = glmer(responsec~ 
             statusc*lopc*payoffc+ 
             (1+statusc|subject)+ 
             (0+(lopc+payoffc)*statusc-statusc||subject)+ 
             (1+statusc|item)+ 
             (0+payoffc+statusc:lopc||item), 
           data = test.trials, 
           family = binomial(scaled.probit(test.trials$status:test.trials$lop, sds)), 
           control = glmerControl(optimizer = 'bobyqa')) 
print(summary(l4), corr=F) 
## Generalized linear mixed model fit by maximum likelihood (Laplace 
##   Approximation) [glmerMod] 
##  Family: binomial  
##  ( scaled.probit with SDs { old:deep = 1.0000, old:shallow = 1.0000, new:shallow = 0.9143, 
new:deep = 0.7661 } ) 
## Formula: responsec ~ statusc * lopc * payoffc + (1 + statusc | subject) +   
##     (0 + (lopc + payoffc) * statusc - statusc || subject) + (1 +   
##     statusc | item) + (0 + payoffc + statusc:lopc || item) 
##    Data: test.trials 
## Control: glmerControl(optimizer = "bobyqa") 
##  
##      AIC      BIC   logLik deviance df.resid  
##  18706.1  18864.3  -9333.0  18666.1    20184  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -7.6464 -0.4839 -0.1803  0.4917  7.9369  
##  
## Random effects: 
##  Groups    Name            Variance Std.Dev. Corr 
##  item      statusc:lopc    0.02867  0.1693        
##  item.1    payoffc         0.01225  0.1107        
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##  item.2    (Intercept)     0.04685  0.2165        
##            statusc         0.15116  0.3888   0.31 
##  subject   payoffc:statusc 0.13581  0.3685        
##  subject.1 lopc:statusc    0.21476  0.4634        
##  subject.2 payoffc         0.17843  0.4224        
##  subject.3 lopc            0.04923  0.2219        
##  subject.4 (Intercept)     0.01920  0.1386        
##            statusc         0.15687  0.3961   0.05 
## Number of obs: 20204, groups:  item, 320; subject, 64 
##  
## Fixed effects: 
##                      Estimate Std. Error z value Pr(>|z|)     
## (Intercept)          -0.21630    0.02393  -9.040  < 2e-16 *** 
## statusc               1.69731    0.05881  28.863  < 2e-16 *** 
## lopc                  0.20419    0.03508   5.821 5.84e-09 *** 
## payoffc               0.65459    0.05740  11.404  < 2e-16 *** 
## statusc:lopc         -1.07240    0.07288 -14.715  < 2e-16 *** 
## statusc:payoffc       0.03348    0.06299   0.531    0.595     
## lopc:payoffc          0.19903    0.04241   4.693 2.69e-06 *** 
## statusc:lopc:payoffc  0.02204    0.08477   0.260    0.795     

Model 4 (l4) is a significantly better fit than Model 3 (l2) and is therefore 

concluded as the best fit to the data: 

anova(l4,l2) 
## Data: test.trials 
## Models: 
## l4: responsec ~ statusc * lopc * payoffc + (1 + statusc | subject) +  
## l4:     (0 + (lopc + payoffc) * statusc - statusc || subject) + (1 +  
## l4:     statusc | item) + (0 + payoffc + statusc:lopc || item) 
## l2: responsec ~ statusc * lopc * payoffc + (1 + statusc | subject) +  
## l2:     (0 + (lopc + payoffc) * statusc - statusc || subject) + (1 +  
## l2:     statusc | item) + (0 + (lopc + payoffc) * statusc - statusc ||  
## l2:     item) 
##    Df   AIC   BIC  logLik deviance  Chisq Chi Df Pr(>Chisq) 
## l4 20 18706 18864 -9333.0    18666                          
## l2 22 18708 18882 -9331.9    18664 2.2355      2      0.327 


